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ABSTRACT 
 

SEIMR/R-S corresponds to a generalized mathematical model of pandemics that 
enhances traditional, aggregated simulation models when considering inter-regional 

impacts in a macro region (conurbed); SEIMR/R-S also considers the impact of modeling 

the population divided into socio-demographic segments based on age and economic 
stratum (it is possible to include other dimensions, for example: ethnics, sex, … ). 

 
SEIMR/R-S is the core of the SEIMR/R-S/OPT epidemic management optimization 

model that determines optimal policies (mitigation and confinement) considering the spatial 

distribution of the population, segmented socio-demographically and multiple type of 
vaccines. The formulation of SEIMR/R-S/OPT is presented in PART III: SEIMR/R-

S/OPT Epidemic Management Optimization Model (Velasquez-Bermudez 2021) 
describing its implementation in an optimization technology, like GAMS and AMPL. The 

modeling of the vaccination process is presented in Part III. 

 
SEIMR/R-S can be understood and used by any epidemiologist, and/or physician, working 

with SIR, SEIR or similar simulation models, and by professionals working on the issue of 
public policies for epidemic control. 

 
SEIMR/R-S epidemic model was carried out in a JAVA program. This program may be 

used by the organizations that considers the SEIMR/R-S will be useful for management 

the COVID-19 pandemic.  
 

 

1. EPIDEMIC & CONTROL POLICIES MODEL 
 

The SEIMR/R-S is a detailed epidemic model that is the result of integrating the SIR, SEIR and 
SEI3RD model; in these standard models the population is grouped in only one homogenous group. 

SEIMR/R-S  extends the modeling to a multi-segment-sociodemographic multi-region system.  

 
SEIMR/R-S  model describes the epidemic with following states:  

S  Susceptible: initially covers all population that potentially can be infected (SU)  
E  Exposed: Population that has been infected and are in an incubation (latency) period (EX). The 

model SIR does not include this state. 

IM  Multi-Infected: Population that has been infected and has active the pathogen in different states 
of development (I0, I1,I2, … , IN). The active infected states are ordered according to the severity 

of the infection. The modeled SIR and SEIR consider only one infected state. For convenience, the 
last state is called “IN”    

R  Recovered: Recovering population (RE) 

 
R-S is related with the Region-Segment model that considers multiples regions where live people 

classified in multiples socio-demographics segments.  
 

1.1. CONCEPTUAL FRAMEWORK 
 

The following documents have been referenced and used for writing the following numerals: 

▪ Brauer, F. and Castillo-Chavez, C. (2000). Mathematical Models in Population Biology and 
Epidemiology. Springer, New York, 2000.     

▪ Cai, Y., Kang, Y., Banerjee, M., & Wang, W. (2015). A stochastic SIRS epidemic model with infectious 
force under intervention strategies. Journal of Differential Equations, 259(12), 7463-7502. 

▪ Carcione, J., Santos J. E., Bagaini, C. and Jing, Ba. (2020) A Simulation of a COVID-19 Epidemic 

Based on a Deterministic SEIR Model. 
▪ Erdem, M., Safan, M., & Castillo-Chavez, C. (2017). Mathematical analysis of an SIQR influenza model 

with imperfect quarantine. Bulletin of mathematical biology, 79(7), 1612-1636. 
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▪ Eubank, S., Eckstrand, I., Lewis, B., Venkatramanan, S., Marathe, M., & Barrett, C. L. (2020). 
Commentary on Ferguson, et al.,“Impact of Non-pharmaceutical Interventions (NPIs) to Reduce 

COVID-19 Mortality and Healthcare Demand”. Bulletin of Mathematical Biology, 82, 1-7. 
▪ Ferguson, N., Laydon, D., Nedjati Gilani, G., Imai, N., Ainslie, K., Baguelin, M., ... & Dighe, A. (2020). 

Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and 

healthcare demand. 
▪ Hethcote, H. W. (2000). “The Mathematics of Infectious Diseases.” SIAM Review 42.4 (2000), pp. 

599–653.  
▪ Huang G. (2016). Artificial infectious disease optimization: A SEIQR epidemic dynamic model-based 

function optimization algorithm. Swarm and evolutionary computation, 27, 31–67. 

https://doi.org/10.1016/j.swevo.2015.09.007 
▪ Jing, W., Jin, Z., & Zhang, J. (2018). An SIR pairwise epidemic model with infection age and 

demography. Journal of biological dynamics, 12(1), 486-508. 
▪ Kermack, W.O. and Mc Kendrick, A. G.,(1927) “Contributions to the Mathematical Theory of 

Epidemics, Part I”. Proc. R. Soc. London, Ser. A, 115, 1927, 700-721. 

▪ Liu M. and Liang, J. (2013). Dynamic optimization model for allocating medical resources in 
epidemic controlling.  Journal of Industrial Engineering and Management JIEM, 2013 – 6(1):73-88 – 

Online ISSN: 2013-0953   
▪ Massad, E., Bruattini, N.M., Coutinho, B. A. F. and Lopez, F. L., (2007). “The 1918 Influenza An 

Epidemic in the City” of Sao Paulo”, Brazil, Medical Hypotheses, 68, 2007, 442-445 
▪ Mejía Becerra, J. D. et. al. (2020). “Modelación Matemática de la Propagación del SARS-CoV-2 en la 

Ciudad de Bogotá. Documento de Circulación Informal 

▪ Pang, W. (2020). Public Health Policy: COVID-19 Epidemic and SEIR Model with Asymptomatic Viral 
Carriers. Department of Mathematics and Statistics, McMaster University arXiv:2004.06311v1 [q-

bio.PE] 14 Apr 2020. 
▪ Radulescu, A., & Cavanagh, K. (2020). Management strategies in a SEIR model of COVID 19 

community spread. arXiv preprint arXiv:2003.11150. 

▪ Samsuzzoha, Md. (2012) . “A Study on Numerical Solutions of Epidemic Models”. Doctoral Thesis, 
Swinburne University of Technology, Australia, 2012. 

 
The goal of epidemic control strategies is to reduce R0. This can be achieved by reducing susceptibility or 

contact rates in the population or the infectiousness of infected populations. The potential effectiveness 
of medical intervention by varying the infectiousness of infected populations and nonmedical interventions 

by reducing the contact rates in the population have been examined. In medical intervention, use of 

vaccines and/or antiviral agents for case of treatment can increase the recovery rate and reduce the 
death rate. On the other hand, in nonmedical interventions, reducing population contact rates through 

social distancing and travel restrictions can reduce the impact on the transmission process.  

 
GOAL OF EPIDEMIC MODELING

 
Control of an outbreak relies partly on identification of the disease parameters that lead to a significant 

reduction of the basic reproduction number R0 that may be function of several parameters of which , 

https://doi.org/10.1016/j.swevo.2015.09.007
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the recovery rate for clinically ill and , the transmission coefficient, are the most sensitive parameters. 

These two parameters can be controlled by medical intervention and nonmedical interventions.  

 
EPIDEMIC DIFFUSION MODEL AS FUNCTION OF R0
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The modeling of epidemics in a solidly developed area of scientific knowledge, widely studied based on 

simulation models. The master table of epidemic models shows some of the best-known models 

 
TABLE: MAE_EMO  

STATE 
(COD_EMO) 

DESCRIPTION 
(DIN_EMO) 

Reference 
(COM_EMO) 

Imple 
mented 

SIR Susceptibility (S), Infection (I) and Recovery (R) 
Kermack & Mc Kendrick (1927) 
Jing  (2018) 

YES 

SEIR 
Susceptibility (S), Exposure (E), Infection (I) and Recovery 
(R) 

Hethcote (2000) YES 

SEIRA 
Susceptibility (S), Exposure (E), Infection (I) and Recovery 
(R) 

 NOT 

SEI3RD 
Susceptibility (S), Exposure (E), 3+1 Infection States (I3), 
Recovery (R) and Death (D) 

Mejía Becerra et. al. (2020) YES 

SEIQR 
Susceptibility (S), Exposure (E), Infection (I), Quarantine (Q) 
and Recovery (R) 

Huang (2016) NOT 

SIRS 
Susceptibility (S), Infection (I), Recovery (R) and 
Susceptibility (S) 

Cai (2015) NOT 

 

Then, an epidemiological model is defined based on differential equations that explain the evolution of 

the process without human intervention. These differential equations can be established based on the 
population (number of people) who are in a certain "epidemic" state or based on the fraction of the 

population that is in that state. The epidemic models are nonlinear systems of ordinary differential 
equations, traditionally this equations system is solved using simulation models based in a discrete 

approximation for continuous derivatives, be it over time or space. There are many possible schemes. 

These models are used to analyze several widely discussed (predefined) scenarios and provide evidence 
on their effectiveness and are not oriented to get the optimal solution of a mix of control policies. 

 
The added value by mathematical programming approach is to convert simulation models into 

optimization models to be able to combine them with other mathematical programming models, following 

the principles of structured mathematical modeling that allows join multiple problems of mathematical 
programming in a single model. Based on the above, the formulation of the models is done by means of 

algebraic equations that represent how the epidemiological process evolves during the planning horizon. 
 

For the optimization epidemic modeling, the approach is based on multiple state chains that can be 
associated with semi-Markov chains; initially, it was proposed to model based on the approach of semi-

Markovian processes (changing transition matrices over time) but such an approach brings multiple 

complications in the math formulation of probabilities.    
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After analyzing the implementation of main (most known) epidemiological models (SIR, SEIR), it was 
decided to directly model discrete versions of differential equations as they maintain direct connection 

with biological parameters, which facilitates the connection of these parameters with socio-demographic 
segments. 

 

Therefore, all epidemiological models considered should be formulated in one of the following terms.  
▪ The time unit of the differential equations is one day.  

▪ The states contain the fraction of the population in each state.  
▪ The time of the optimization model may be divided in periods of multiple days (one week, seven 

days). In this case, the integration of the differential equations must be made using calculated 

parameters.    
 

The epidemic states are showed in the master table MAE_STA. The models will be implemented using 
this nomenclature. The table includes the symbol used in the original models and the code used in the 

information system to reference the state.  

  
EPIDEMIC STATES - TABLE: MAE_STA 

MODEL 
SYMBOL 

EPIDEMIC 
STATE 

(COD_STA) 

DESCRIPTION 
(DIN_STA) 

COMMENTS 
(DLIN_STA) 

S SU Susceptible 
Population 

Those individuals who have not been exposed to the pathogen and are 
susceptible to being infected by it. 

E EX Exposed Population Those individuals who are in the latency state; that is, they have been 
inoculated by the pathogen but are not yet infectious 

I IN Infected Population 
In SIR and SEIR models is infected population. It must be the most critical 
state for infected people; this is important for models that have more 
than one epidemic states to describe the infection process.  

I0 I0 
Asymptomatic 
Infectious 

Those individuals in the population who have been inoculated by the virus 
are infectious but have not developed symptoms. Those infected in this 
state rarely learn that they have been infected. 

I1 I1 
Moderate Symptoms 
Infectious 

Those individuals in the population who are infectious and have mild or 
moderate symptoms. They are those who can be given management of 
the disease at home. 

I2 I2 
Severe Symptoms 
Infectious 

Those individuals in the population who are infectious and have severe 
but not critical symptoms. Individuals present in this state require 
hospitalization. 

I3 IN 
Critical Symptoms 
Infectious 

It must be the most critical state for infected people; this is important for 
models that have more than one epidemic states to describe the infection 
process. In SIR and SEIR models is infected population 

R RE 
Recovered 
Population 

Those individuals recover from infection, having developed antibodies. In 
most of the models they cannot be re-infected. 

 ED Epidemic Dead Individuals who fail the infection and die. 

 ND Natural Dead Individuals who die by other reason different to the epidemic 

 NP New Population Individuals coming from an exogenous macro-region. 

 
The indexes used in the modeling are presented in the next table.  

 
INDEXES 

Index 
HEA 

Short Description 
(Entities) 

Long Description 

ag Age Age 

mr Macro-region Macro-Region 

rg, ro, rd Region Region (Basic Territory Unit)  

ss Social Segment Socio-Demographic Segment 

st, s1 Epidemic State Epidemic State 

t, q Period  

 
The measurements used must be equal for all models  

 
Measurement Unit Master Table: MAE_UND  

Measurement Unit 
COD_UND 

Description 
DES_UND 

1/peo-day 1/ persons-day 



 

Management  Epidemics using High Complexity Mathematical Modeling  
PART II: SEIMR/R-S General Epidemic Simulation Model.  

THEORY  

 

6 

 

Measurement Unit Master Table: MAE_UND  

Measurement Unit 
COD_UND 

Description 
DES_UND 

fpo/day Fraction of population per day 

peo-day Persons-day 

 
One of the main limitations of the traditional approach is to assume that the entire population is 

homogeneous with respect to its epidemiological behavior. It is well known that the epidemic manifests 

differently in each socio-demographic stratum and that the composition of socio-demographic segments 
depends on each region. 

 
In order to enhance the model to be useful in real cases, it is assumed that there is a different pandemic 

(because it has different parameters) for each pair <region, demographic-segment. These hypotheses 

may vary according to each case study. In this case, reference has been made to the data used to control 
the epidemic in a macro-region. It should be noted that the parameters of each epidemiological model 

vary in quantity but do not vary in the form of calculation, since they are parameters as the same case, 
which is studied with different mathematical models. 

 

The models are studied under the hypothesis of a homogeneous population in a region, then the epidemic 
is assumed to be particular to each duple <rg,ss> and the equations are formulated depending on 

<rg,ss>. The advantage of this approach will be visualized when the epidemic model is coupled with the 
management of health resources and control policies, which can be individualized for each duple <rg,ss>.  

 
The model parameters can be grouped by the original source of variation, these sources are: 

▪ Pathogen: characteristics of the epidemic due to the pathogen 

▪ Age: It is typical for recovery/worsening times (rates) and probability of recovery to be a function of 
age. 

▪ Economic stratum: influences the epidemic by means of the intensity of contact, product of the 
number of contacts, the duration of contacts and the closeness, these variables may also be a 

combined function of age and economic. 

Additionally, may be considered people coming for the exogenous systems (out of the microregion) to 
the region. 

 
In this case, the socio-demographic segments are a combination of age with an economic stratum. The 

biological parameters depend on age.   
 

2. GENERAL SIMULATION EPIDEMIC MODEL   

 
Below is presented an aggregate model of epidemic that is the result of integrating the SIR model, SEIR 
and SEI3RD; in these standard models the population is grouped in only one homogenous group. 

SEIMR/R-S  extends the modeling to a multi-segment-sociodemographic multi-region system.  
 

The general assumptions for standard epidemic models are: 

▪ No vaccine exists 
▪ The susceptible population is reduced through infection (moving to infective state). 

▪ People who recovered after catch the virus will be insusceptible of it 
▪ The population of infective class is increased by a fraction of susceptible individuals becoming 

infective.  
▪ All other people are susceptible 

▪ The population is homogenous 

▪ The population of “critical” infective individuals is reduced by recovery from the disease. 
 

SEIMR/R-S  model describes the epidemic with following states:  
S  Susceptible: initially covers all population that potentially can be infected (SU)  

E  Exposed: Population that has been infected and are in an incubation (latency) period (EX). The 

model SIR does not include this state. 
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IM  Multi-Infected: Population that has been infected and has active the pathogen in different states 
of development (I0, I1,I2, … , IN). The active infected states are ordered according to the severity 

of the infection. The modeled SIR and SEIR consider only one infected state. For convenience, the 
last state is called “IN”    

R  Recovered: Recovering population (RE) 

 
R-S is related with the Region-Segment model that considers multiples regions where live people 

classified in multiples socio-demographics segments.  
 

The next table shows the relation between models and epidemic states. 

 

Model 

SEIMR/R-S Model Epidemic States 

Standard  Extended  Capacity  

SU EX I0 I1 I2 … IN RE NP ED ND IU CD 

SIR x      x x      

SEIR x x     x x      

SEI3RD x x x x x x x x  x    

SEIMR/R-S x x x x x x x x x x x x x 

 
2.1. SIR: EPIDEMIC MODEL   
 

The SIR model is a basic model in epidemic modeling (Kermack and Mc Kendrick, 1927). SIR process, 

starting with a susceptible host who becomes infected, the class of infection grow for the infected 
individuals to be able to transmit the infection to susceptible. When the infected individual is no longer 

able to transmit infection to susceptible individual, the infected individual is removed from the cycle of 
diseases transmission in the population. This model is based on the following assumption: 

 

Then,  the basic SIR model describes the epidemic with three states:  
S  Susceptible: initially covers all population that potentially can be infected (SU)  

I  Infected: Population that has been infected (IN) 
R  Recovered: Recovering population (RE) 

The diagram shows the behavior of S(t), I(t), and R(t) when they are normalized to total of population 
(TPOB) equal to 1. The biological parameters used in SIR and SEIR model are described below. 

 
SIR MODEL - BIOLOGICAL PARAMETERS 

Parameter Description 
Equation Measure 

Unit  

 Contact Intensity – Exogenous Parameter  peo-day 

 Probability of transmission per contact intensity (infectivity)   

 Recovery rate for clinically ill   fpo/day 

 Epidemic death (mortality) rate    fpo/day 

N Natural mortality rate   fpo/day 

  The latency period of the virus before developing  day 

 Inverse virus latency period 1/  1/  

 Inverse contact intensity  infectivity       

 Relative removal rate  /  

R0 Basic reproduction ratio/number   

 
The diagram resumes the standard SIR epidemic model. 
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Susceptible-Infectious-Recovered (SIR) 
Epidemic Model

S I R  I  S   I

 
SIR model is represented based on three differential equations based on proportions of people in each 

state (the ratio between the people in a state with the initial population TPOB). The measurements 

between parentheses. 
 

S(t)/t (fpo/day) = -  (1/fpo-day)  I(t) (fpo)  S(t) (fpo) 

 

I(t)/t (fpo/day) =  (1/fpo-day)  I(t) (fpo)  S(t) (fpo) -  (fpo/day)  I(t) (fpo)  

 

R(t)/t (fpo/day) =  (fpo/day)  I(t) (fpo) 

 

where S(t), I(t), R(t) represent the population of susceptible, infected, and recovered individuals, 

respectively. Adding these equations, the following condition must be hold  

 

S(t)/t + I(t)/t + R(t)/t = 0 

 
Additionally, SIR can be extended with other epidemic states for a more complete description of the 

system/epidemic:  
NP  New population entering the system, as people from abroad who in many cases are the ones who 

cause the epidemic (NP).   

ED  People who die due to the epidemic (these people die regardless of the management of the 
epidemic (D).   

ND  People who die from natural death (N) 
 

ND and ED states should be included if it wants to account for the resources consumed by people who 

die, who are killed due the epidemic and due by causes other than the epidemic.  
 

For a more general formulation it is included the exogenous variable NPX(t) tha represents the proportion 
of people arriving from an exogenous system, may be births or people arriving from a foreign 

country/region. The value of NPX(t) is a border condition with the foreign system over any value of t it 

is calculated taking as reference the initial population TPOB. This adjustment may be important in regions  
high people exchange rates islands dedicated to tourism. Next table shows the parameters used to this 

modeling.  
 

EXOGENOUS SYSTEM PARAMETERS 

Parameter Description 
Measure 

Unit 

E Exposed rate coming from the exogenous system fpo/day 

S Susceptible rate coming from the exogenous system fpo/day 

I Infectious rate coming from the exogenous system fpo/day 

R Recovered rate coming from the exogenous system fpo/day 

 

Next diagram shows the epidemic system modeled. 
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STATE TRANSITION DIAGRAM - SIR MODEL

STATE DESCRIPTION

NP New Population 

SU Susceptive Population

IN Infective Population

RE Recovered Population

ND Natural Dead

ED Epidemic Dead

RE

SU IN

EDND

NP

  I  S

  I

z  I

  R  S

S  NP I  NP

R  NP

 
Then, the differential SIR equations must be adjusted: 

 

S(t)/t = -   I(t)   S(t)  + S  NPX(t) - N  S(t)  

 

I(t)/t =  (I(t)   S(t) – ( + z)  I(t) + I  NPX(t) 

 

 R(t)/t =    I(t)  - N  R(t) + R  NPX(t) 

 

D(t)/t =   I(t)  

 

N(t)/t =  N  S(t) +  N  R(t)  

 

where N represents the natural mortality rate and st the rates coming from the exogenous system to 

the state st. 

 
If TPOB is the initial total population, and it is constant over time, NPX(t)=0, the model meets the 

hypothesis that at all times 
 

S(t) + I(t) + R(t) + D(t) + N(t) = 1 

 
If NPX(t) is different from zero the previous equation must be adjusted as  

 

S(t) + I(t) + R(t) + D(t) + N(t) = 1 + q[0,t] NPX(q) q 

 

To simulate the process the border conditions at the beginning of the simulation horizon are: S(0), I(0), 

R(0), D(0) and NPX(t), for all t.  
 

Assuming NPX(t) equal to zero, the ratio  = / is called the relative removal rate. Thus, dynamics of 

infectious depends on the following ratio:  

 

R0 = S(0)  / 

 

where R0, called the basic reproduction ratio/number, is defined as the number of secondary infections 

produced by a single infectious individual during his/her entire infectious period. The role of the basic 
reproduction number is especially important. However, the following mathematical analysis describes how 

the basic reproduction number depends on the host population and the infected host. 

 

At time t = 0, I/t can be written as 

 

I/t = (R0 – 1)    I(0) 
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if R0 > 1 then I/t > 0 and therefore the disease can spread; but if R0 < 1 then the disease dies out. 

Making mathematical manipulation it is possible to prove that the maximum number of infective at any 
time is  

 

TPOB (1 −  +  ln [  / S(0) ] ) 

 
It should be noted that the probability of transition becomes a dynamic variable that must be calculated 

by the mathematical model, for that reason the t index must be included. 
 

2.2. SEIR EPIDEMIC MODEL 

 
The classic SEIR model describes the epidemic dynamics based on the transitions between four different 

compartments (epidemic states): susceptible (S), exposed (E), infectious (I), and recovered (R) 

individuals. The SEIR symbols are the same SIR symbols plus the parameter  that represents the inverse 

of the virus latency/incubation period (). There are multiple versions of the SEIR model, below are some 

images summarizing some of the literature consulted: Radulescu & Cavanagh (2020), Hethcote, H. W. 
(2000), Carcione et a. (2020), Pang, W. (2020), Liu and Liang (2013), Grimm et al. (2020).   

 

RE

SU EX IN

EDND

NP

STATE DESCRIPTION

NP New Population 

SU Susceptive Population

EX Exposed Population

IN Infective Population

RE Recovered Population

ND Natural Dead

ED Epidemic Dead  I  S

  I

z  I  R

  E

  E

  S

S  NP

I  NP

R  NP

E  NP

STATE TRANSITION DIAGRAM - SEIR MODEL

 
The equations of SEIR model are the same as those of SIR model considering the following changes:  

 

E(t)/t  =   I(t)  S(t) -   E(t) + E  NPX(t) 

 

I(t)/t  =   E(t) – ( + z)  I(t) + I  NPX(t) 

 

2.3. SEIMR EPIDEMIC MODEL 
 

SEIMR is a generalization of the SEI3RD epidemic model that was developed with the aim of simulating 
the transmission and evolution of acute infections. This simulation assumes that the pathogen causes an 

infection followed by lifelong immunity or death. Two versions of SEI3RD was revised: Grimm et al. 

(2020) and Mejía Becerra et al. (2020), this version is used in this document.  
 

In SEI3RD models the classic SEIR model is extended to distinguish between:  
i) Several categories of infectiousness; for example: asymptomatic, symptomatic, moderate, and severe 

cases 
ii) Recovered and dead people.  

Being able to explicitly distinguish these different groups is important as they can greatly differ in terms 

of their underlying parameters as well as in terms of their behavioral response to public health 
interventions compared with the SEIR Model. 
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STATE TRANSITION DIAGRAM – SEI3RD / SEIMRD EPIDEMIC MODELS

RE

SU I0

EDND

NP

I1 I2 IN

N  SU

N  IN

s0I0

 1 I1 2  I20 I0

N  RE

  RE

S  NP

I  NP

R  NP

E  NP

EX
s1I1 s2I2

  SU  Sst Ist

sNIN

 
 

The transition between infected states follows this assumptions: 
▪ A person can only be infected by one of the individuals belonging to one of the infected states (I0, I1, 

I2, I3, … , IN). In advance, it will be used the index st  that is equivalent to index i. 
▪ Being inoculated by the pathogen, the individual passes to the group of exposed E. 

▪ After the latency period, the person in the exposed state becomes asymptomatic infectious (I0 state). 
▪ Once the person is in Ist state, there are two possible outcomes: worsening clinical status (moving to 

mild/moderate/critical infected Ist+1) or recovery (R). 

▪ If the person recovers, in any of the states of infection, they enter the absorbent recover state (R). 
▪ Similar logic applies for a larger number of states of infection. It is understood that if an individual of 

the last state of infection (I3) worsens its clinical condition if it die (E). 
 

Next table shows the biological parameters of SEI3RD epidemic model.  

 
BIOLOGICAL PARAMETERS – SEI3RD  MODEL 

Parameter Description Equation 
Measure 

Unit 

N Natural mortality rate  fpo/day 

 The latency period of the virus before developing  day 

 Epidemic mortality rate  fpo/day 

 Probability of that a person may be contagion  prob 

st Probability of I0, I1, I2, I3, …  of recovering   prob 

st Time a patient in I0, I1, I2, I3, … recovers  day 

st Time a patient in I0, I1, I2, I3, … to next infected state   day 

zst Total contact free rate in I1, I2, I3, …  1/day 

cst
 Free probability of contagion in state I1, I2, I3, …  Prob 

st Fraction of people who recover in one day 1st fpo/day 

sst Fraction of people who develops symptoms 1st fpo/day 

st I0, I1, I2, I3, … state transmissibility free rate - zst 𝑙𝑜𝑔(1 - cst) fpo/day 

 Inverse virus latency period 1/  1/day 

 
It should be noted that there are differences in the equations related to transmissibility rate between the 

formulation presented by Mejía Becerra et al. (2020) and the standard formulations for SIR and SEIR 
models. This aspect will be analyzed a later numeral. 

 

It is important to understand the relationship between the probability of recovery, the recovery/worsening 
time, and the rate of departure of people from a state. The output rate from one state to another state 

may be based on the following expression: 
 

Output Rate to State (st) = Output Probability to State (st) / Departure Time to State (st) 

 
The total exit rate to any state implies the sum of exit rates to all states. 
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Output Rate = Sst Output Rate to State (st) 

 
The SEI3RD equations (Mejía Becerra et al., 2020) of the dynamic model described previously symbolize 

the proportion of individuals in the population in each of the states (S, E, Ii, R and D), they are: 

 

S(t)/t = - S(t) ( 0(t)   I0(t) + 1(t)   I1(t) + 2   I2(t) + 3  I3(t) ) 
 

E(t)/t = S(t) ( 0(𝑡)   I0(t) + 1(t)  I1(t) + 2  I2(t) + 3   I3(t) ) -    E(t) 
 

𝐼0(t)/𝑡 =   E(t) - 0  0  I0(t) - (1 - 0)  s0  I0(t) 
 

I1(t)/t = (1 - 0)  s0  I0(t) - 1  1  I1(t) - (1 - 1)  s1  I1(t) 
 

I2(t)/t = (1 - 1)  s1  I1(t) - 2  2  I2(t) - (1 - 2)  s2  I2(t) 
 

I3(t)/t = (1 - 2)  s2  I2(t) - 3  3  I3(t) - (1 - 3)  s3  I3(t) 
 

R(t)/t = 𝛿0  0  I0(t) + 1  1  I1(t) + 2  2  I2(t) + 3  3  I3(t) 
 

D(t)/t = (1 - 3)  s3  I3(t) 
 

The following specification must be considered: 
 

1.  is the reciprocal of the average latency period. 

 

2. st is the likelihood (probability) that an individual in group Ist will recover without worsening their 

clinical condition. This version of SERI3D considers that the people only death, for epidemic reasons, 
in the last infected state. This limitation may be relaxed but it implies the estimation of more 

parameters. Then,  the mortality rate is equal to st , for st equal to the last infected state.  

 

3. st  is the reciprocal of the average recovery time, without worsening its clinical state, of an individual 

of class Ist. 

 

4. sst is the reciprocal of the average complication time of a patient in the Ist state. 

 

5. st is the transmissibility rate of an individual in state Ist. Mejía Becerra et al. (2020) includes 

transmissibility rates related with the epidemic control policies, this is ignored in SEIMR/R-S general 
formulation, but it will be presented later in the MBC case.  

 

Then, the equations of SEI3RD model are the same as those of the previous SEIR model considering 
the following changes:  

 

S(t)/t  = - [ SstINF st  Ist(t) ]  S(t)  + S  NPX(t) - N  S(t) 

 

E(t)/t  =  [ SstINF st  Ist(t) ]  S(t) -   E(t) + E  NPX(t) 

 

I0(t)/t  =   E(t) - 0  I0(t) + I  NPX(t) 

 

Ist(t)/t = sst-1  Ist-1(t) − st  Ist(t)  

 

R(t)/t = SstINF st  Ist(t) - N  R(t) + R  NPX(t) 

 

D(t)/t = SstIF sst  Ist(t) 

 
The following relations should be considered: 

▪ Equation Ist(t)/t valid for stI1F (the set of infected states excluding the first infected state, I0) 
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▪ stINF is the set of all infected states 

▪ stIF is the set associated to the last infected state. 

 

The following definitions (auxiliary parameters) was included  

 

sst = st  sst 
sst = (1 - st)  sst = sst - sst 

st = st  st 

st = (st  st + (1 - st)  sst) = st + sst 

 = SstIF sst 

 

The following table resumes the equation included in SEIMR model. The equation has been divided in 

positive (increment) and negative (decrement) impacts on the state st. 

 
SEIMR - Differential Equations 

stSET 
State 

Increment 
State 

Decrement 
Natural 
Dead 

Exogenous 
Increment 

SU S   NPX(t) IS(t)  S(t) N  S(t) S  NPX(t) 

EX IS(t)  S(t)   E(t)  E  NPX(t) 

IN IS(t)  S(t) 

st  Ist(t) 

 I  NPX(t) 

I0   E(t)  I  NPX(t) 

I1F sst-1  Ist-1(t)   

RE SstI1F st  Ist(t)  N  R(t) R  NPX(t) 

ED SstIF   Ist(t)    

 AUXILIARY EQUATION   

 IS(t) = [ SstINF st(t)  Ist(t) ]   

 

These equations serve to represent any of the three models studied. The conditions are as follows: 
 

1. SIR Model:  

▪ Only consider one infected state IN the definitions of the infected state sets are: 

stIF={IN}, stI1F={}, stI0={}, stINF={IN} and stIN={IN}  

▪ Do not include the exposed state (E), that means that stEX={} 

2. SEIR Model 

▪ Only consider one infected state IN the definitions of the infected state sets are equal to SIR 

model. 
3. SEIMR Model 

▪ Considered multiples infected stats {I0, I1, I2,… , IN}  IN associate to IN, do not include the state 
I0 that means: 

stIF={IN}, stI1F={I1, I2, … , IN}, stI0={I0}, stINF={I0, I1, I2, … , IN} and stIN={I}  

 

The next table presents the SETs of epidemic states needed to model the three epidemics models. The 
infected sets permit to model any of the three models with the same equations; they are used to define 

the existence conditions of the equations and in summation limits into the equations. 
 

Epidemic States SETs 

Model 
Epidemic States Non Infected States Infected States 

STA SU EX RE ED ND INF IN I0 I1F IF 

SIR S, I, R, D, N S  R D N I I    

SEIR S, E, I, R, D, N S E R D N I I    

SEIMR S, E, I0, I1, I2, … , IN, D, N S E R D N I0, I1, I2, … , IN  I0 I1, I2, … IN-1 IN 

 

3. SEIMR/R-S GENERAL EPIDEMIC MODEL  

 

The SEIMR/R-S model is built on the basic equations of the SEIMR model including the effects of 
considering the development of the epidemic in a territory (macro-region) that includes multiple regions 

in which the population socio-demographic segments are distributed in a non-homogeneous manner. 
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3.1. COMMON ALGEBRAIC NOTATION   
 

Including regional and socio-demographic segment modeling (in this case age and economic stratum) 
involves associating the biological parameters with these aspects. Therefore, biological parameters may 

be related to indices: rg (region), ss (socio-demographic segment), ag (age) and/or se (economic 

stratum). 
 

The next table shows the basic parameters of the SEIMR and SEIMR/R-S and their relationships.  
 

BIOLOGICAL PARAMETERS – SEI3RD  &  SEIMR/R-S  Models 

SEIMR SEIMR/R-S 
Description 

Measure  
Unit Parameter Parameter Source 

N N Read Natural mortality rate fpo/day 

  Read The latency period of the virus before developing day 

 ag Model Epidemic mortality rate fpo/day 

 rg,ss Model Probability of that a person may be contagion prob 

δst δag,st Model Probability of I0, I1, I2, I3, …  of recovering  prob 

st ag,st Model Time a patient in I0, I1, I2, I3, … recovers day 

st ag,st Model Time a patient in I0, I1, I2, I3, … to next infected state  day 

st  Model Transmissibility rate of an individual in state st  

zst z Model Total contact free rate in I1, I2, I3, … 1/day 

cst
 cag,st

 Model Free probability of contagion in state I1, I2, I3, … prob 

 
The source Model indicates that parameters should be the result of the mathematical model of 

parameters to be constructed from the regional distribution of socio-demographic segments and their 

characterization from specific studies developed for the macro-region. This topic will be discussed in detail 
in the implementation of the City of Bogotá (Velásquez, 2020).  

 
Because the variability of the SEI3RD parameters is simpler than that of the SEIMR/R-S parameters it 

is possible to replace the SEIMR/R-S parameters with the SEIMR to have an equivalent model, but less 
explanatory of the details that differentiate the epidemic process in the regions. 

 

The calculated biological parameters used in SEIMR/R-S model is presented below; they are divided in 
basic and auxiliary parameters that are included to make easier the implementation process. 

 
BIOLOGICAL PARAMETERS (CALCULATED) - SEIMR/R-S MODEL 

SEIMR SEIMR/R-S 
Description 

Measure 
Unit Parameter Equation  Parameter Equation  

st 1st ag,st 1ag,st Fraction of people who recover in one day fpo/day 

sst 1st sag,st 1ag,st 
Fraction of people who develops 
symptoms 

fpo/day 

st - 𝜉st log(1 - cst) st - 𝜉st log(1 - cag,st) I0, I1, I2, I3, … state transmissibility rate fpo/day 

 1/  1/  Inverse virus latency period 1/day 

sst st sst sag,st ag,st sag,st ag,st sag,st  

sst (1 - st) sst sag,st (1 - ag,st) sag,st (1 - ag,st) sag,st  

st st st ag,st ag,st ag,st ag,st ag,st  

st st + sst ag,st ag,st + sag,st ag,st + sag,st  

 SstIF sst ag SstIF sag,st SstIF sag,st  

  rg,ss Model 
Contagion probability function of regional 
and socio-demographics characteristics 

prob 

  rg,ss 
SagAGS(ss) 

ag,st  rg,ss 
Inverse contact intensity  infectivity  

1/fpo-day 

 
3.2. REGIONAL-SEGMENT MODELING 

 
3.2.1. REGIONAL MODELING 
 

To formulate the regional model segmented socio-demographically the following hypotheses are 
assumed:  
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▪ There is no contagion between people living in different regions. This can be true for large regions 
such as states or departments. But it is questionable for metropolitan areas (cities and conurbed 

regions) where there is intense traffic between regions. 
 

▪ The inter-region interrelationship is modeled on the following assumptions:  

▪ There is traffic of people between regions, which sets for each pair of regions the fraction of each 

segment, ro,rg,ss , moving from the source region (ro) to the destination region (rg). 

▪ In addition, the fraction of the time, ro,rg,ss, is known to people from the region origin in the 

destination region during the period (one day). 

 

The calculation process involves determining the impact on the spread of the virus that the population 
movement has for this purpose it is calculated using the number of infected people who can move 

between two regions multiplied by the fraction of the time spent in the destination locality. This implies 
the following effects on the diffusion rate: 

 

1. Infected Movements 
 

▪ Increasing the rate of diffusion in the destination locality due to those infected by coming from 
other regions, it is calculated as: 

 

IIrg(t) = SssSSR(rg) SroROR(rg) ro,rg,ss  ro,rg,ss  ISro,ss(t) 

 
▪ Decreased diffusion rate in the source region due to the infected by moving to other regions, it 

is calculated as: 
 

IErg(t) = SssSSR(rg) SrdRDE(rg) rg,rd,ss  rg,rd,ss  ISrg,ss(t) 

 

The net effect on the rg-region will be: 
 

ISrg,ss(t) = SstINF Ist,rg,ss(t) 

 

 IXrg(t) = SssSSR(rg) ISrg,ss(t)  

 
IRrg(t) = IXrg(t) + IIrg(t) - IErg(t) 

 
where 

Ist,rg,ss(t) fraction of the population infected in st-epidemic-state living in rg-region and ss-
segment.   

ISrg,ss(t) fraction of the population infected living in rg-region and ss-segment.   

IXrg(t) fraction of the population infected living in rg-region  
IIrg(t) weighted fraction of the population infected traveling to rg-region  

IErg(t) weighted fraction of the population infected traveling from rg-region  
 

2. Susceptible Movements 

 
▪ Increasing the rate of diffusion in the destination locality (rg-region) due to those susceptible 

people by coming from other regions that may be infected in rg-region, it is calculated as: 
 

SIro,rg,ss(t) = ro,rg,ss  ro,rg,ss  Sro,ss(t) 

 

The following replace of parameter will be included 
 

ro,rg,ss = ro,rg,ss  ro,rg,ss 

 
▪ Decreased diffusion rate in the source region (rg-region) due to the susceptible people by moving 

to other regions that cannot be infected in rg-region, it is calculated as: 
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SErg,rd,ss(t) = rg,rd,ss  Srd,ss(t) 

 

The susceptible population living in the rg-region ss-segment must be decremented by the 

susceptible people belonging to other regions: 
 

SNrg,ss(t) = Srg,ss(t) - SrdRDE(rg) SErg,rd,ss(t) 

 
where 

Srg,ss(t) fraction of the susceptible population living in rg-region and ss-segment.   

SIro,rg,ss(t) fraction of the ss-segment susceptible population traveling from ro-region to rg-
region  

SErg,rd,ss(t) fraction of the ss-segment susceptible population traveling from rg-region to rd-
region  

 

Next table resume the parameters associated with regional modeling  
 

REGIONAL MODELING PARAMETERS – SEIMR/R-S MODEL 

Parameter Source / Equation Description Measure Unit 

ro,rg,ss Model 
Fraction of ss-segment population moving from the 
source region (ro) to the destination region (rg) 

fpo/day 

rg,rd,ss Model 
Fraction time that spends the ss-segment population 
of the source region (ro) into the destination region 
(rg) 

hour/day 

rg,rd,ss rg,rd,ss  rg,rd,ss rg,rd,ss  rg,rd,ss hour/day 

 
3.2.2. SOCIO DEMOGRAPHIC SEGMENT MODELING 

 
An infected person in any segment can infect anyone susceptible in any socio-demographic segment. 

 

The calculation process implies that at the level of one region the population of any segment can infect 
the population of any other segment. To do this, diffusion (infection of susceptible from infected) is 

managed at a detailed level in the differential equations for all infected states, but in the differential 
equation the infected transmission is calculated based on the summation of all infected states in all ss-

segments. 

 

In traditional aggregated models, this the transfer rate  (the inverse of contact intensity multiplied by 

the transmission probability) is assumed fixed for all region and all socio demographics segments. In 

SEIMR/R-S the transfer rate depends on the socio-demographic segment in a region and it is called 

rg,ss, this parameter must be calculated by the parameters model. 

 
Then, the contagion of the susceptible population living in the rg-region and belonging to the ss-segment 

will be the sum of the contagions that occur in the rg-region (people that do not travel out of the rg-
region) plus the contagions that occur in the rd destination regions this is  

 

S2Irg,ss(t) =   rg,ss  IRrg(t)  SNrg,ss(t) + SrdRDE(rg) rd,ss  IRrd(t)  SErg,rd,ss(t)  

 
3.3. GENERAL FRAMEWORK  

 
The differential equations of the regional-segmented model are: 

 

Srg,ss(t)/t = - S2Irg,ss(t) - N  Srg,ss(t) + S
rg,ss  NPX(t) 

 

Erg,ss(t)/t = S2Irg,ss(t) -   Erg,ss(t) + E
rg,ss  NPX(t) 

st=I0 

Ist,rg,ss(t)/t =   Erg,ss(t) - st,ss   Ist-1,rg,ss(t) + I
rg,ss  NPX(t)   

stI1F 
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Ist,rg,ss(t)/t = zst-1,ss   Ist-1,rg,ss(t) - st,ss   Ist,rg,ss(t)  

 

Rrg,ss(t)/t = SstI1F st-1,ss  Ist,rg,ss(t) - N  Rrg,ss(t) + SssSSR(rg) R
rg,ss

  NPX(t) 

 

Drg,ss (t)/t = SstI1F sss  Ist,rg,ss(t)  

 

NRrg(t)/t = N  SRrg,ss(t) + N  RRrg(t)  

 
where the following rates are defined for the socio-demographic segments  

 
SOCIO-DEMOGRAPHIC BIOLOGICAL PARAMETERS 

Parameter Equation Description  

st,ss SagAGS(ss) ag,st Total exit rate 

zst,ss SagAGS(ss) sag,st Worsening exit rate 

st,ss SagAGS(ss) st,ag Recovering exit rate 

sss SagAGS(ss) ag Mortality rate depending on segment 

ag SstI1F sag,st Mortality rate depending on age 

 

The definition equations of the regional-segmented model are: 
 

ISrg,ss(t) = SstINF st,rg,ss(t) Ist,rg,ss(t) 

 IXrg(t) = SssSSR(rg) ISrg,ss(t)  

IIrg(t) = SssSSR(rg) SroROR(rg) ro,rg,ss  ISro,ss(t) 

IErg(t) = SssSSR(rg) SrdRDE(rg) rg,rd,ss  ISrg,ss(t) 

IRrg(t) = IXrg(t) + IIrg(t) - IErg(t) 

 

 SRrg(t) = SssSSR(rg) Srg,ss(t)  

SIro,rg,ss(t) = ro,rg,ss  Sro,ss(t) 

SErg,rd,ss(t) = rg,rd,ss  Srd,ss(t) 

SNrg,ss(t) = Srg,ss(t) - SrdRDE(rg) SErg,rd,ss(t) 

SINrg(t) = rg,ss  IRrg(t)  SNrg,ss(t) 

SIErg,ss(t) = SrdRDE(rg)  rd,ss IRrd(t)  SErg,rd,ss(t) 

S2Irg,ss(t) = SINrg(t) + SIErg(t) 

 

RRrg(t) = SssSSR(rg) Rrg,ss(t)  

 

DRrg(t) = SssSSR(rg) Drg,ss(t) 

 
From now on, the above mathematical definitions will be summarized as 

 

{ S, E, Ist , D, N }   

 

The next table shows the equations dividing the increment and the decrement on each state, it must be 

considered in the implementation of the mathematical models. The table includes the sets that defined 
the existence of the equations manly for the infected states. 

 
 SIR Regional – Segmented Model - Differential Equations 

Set State 
State 

Increment 
State 

Decrement 
Natural 
Dead 

Exogenous 
Increment 

 REGIONAL - SEGMENT EQUATIONS 

SU Srg,ss(t)/t  S2Irg,ss(t) N  Srg,ss(t) S
rg,ss  NPX(t) 

EX Erg,ss(t)/t S2Irg,ss(t)   Erg,ss(t)  E
rg,ss  NPX(t) 

I0 Ist,rg,ss(t)/t   Erg,ss(t) 
st,ss  Ist,rg,ss(t) 

 I
rg,ss  NPX(t) 

I1F Ist,rg,ss(t)/t zst-1,ss  Ist-1,rg,ss(t)   

RE Rrg,ss(t)/t SstI1F st,ss  Ist,rg,ss(t)  N  Rrg,ss(t) R
rg,ss  NPX(t) 

ED Drg,ss(t)/t SstI1F sss  Ist,rg,ss(t)    

ND NRrg(t)/t N  ( SRrg(t) + RRrg(t) )    

 SUSCEPTIBLE STATE EQUATIONS 
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 SIR Regional – Segmented Model - Differential Equations 

Set State 
State 

Increment 
State 

Decrement 
Natural 
Dead 

Exogenous 
Increment 

  SRrg(t) = SssSSR(rg) Srg,ss(t)  

 SIro,rg,ss(t) = ro,rg,ss  Sro,ss(t) 

 SErg,rd,ss(t) = rg,rd,ss  Srd,ss(t) 

 SNrg,ss(t) = Srg,ss(t) - SrdRDE(rg) SErg,rd,ss(t) 

 SINrg,ss(t) = rg,ss  IRrg(t)  SNrg,ss(t) 

 SIErg,ss(t) = SrdRDE(rg)  rd,ss IRrd(t)  SErg,rd,ss(t) 

 S2Irg,ss(t) = SINrg(t) + SIErg(t) 

 INFECTED STATE EQUATIONS 

 ISrg,ss(t) = SstINF st,rg,ss(t) Ist,rg,ss(t) 

  IXrg(t) = SssSSR(rg) ISrg,ss(t)  

 IIrg(t) = SssSSR(rg) SroROR(rg) ro,rg,ss  ISro,ss(t) 

 IErg(t) = SssSSR(rg) SrdRDE(rg) rg,rd,ss  ISrg,ss(t) 

 OTHER EQUATIONS 

 RRrg(t) = SssSSR(rg) Rrg,ss(t)  

 DRrg(t) = SssSSR(rg) Drg,ss(t) 
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