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“The Apollo computer used 2k of magnetic core RAM and 36k wire rope [...]. The 

CPU was built from ICs [...]. Clock speed was under 100 kHz [...]. The fact that the 
MIT engineers were able to pack such good software (one of the very first 

applications of the Kalman Filter) into such a tiny computer is truly remarkable.” 

 
Interview with Jack Crenshaw, by Matthew Reed, TRS-80.org (2009)  

 
ABSTRACT 

 
From the point of view of managing a pandemic, the mathematical problems to be known: 
i) To define the structure of the models of differential equations that govern the behavior of the pandemic 
ii) To estimate the parameters that define a specific model within the "infinity" of possible models to describe 

the dynamic process. 
iii) To know the true state of the pandemic, which is defined by the number of people, or by the fraction of the 

population, which is in each epidemiological state. 
The importance of an appropriate estimation of the parameters of mathematical models and the state of the 
pandemic is determinant of the decision-making process to control the pandemic. 
 
This chapter presents the integration of Machine Learning (ML) and State Estimation to implement machine 
learning algorithms to understand the behavior of a pandemic system using advanced algorithms based on the 
fundamental concepts that support the so-called Kalman Filter (KF, Kalman and Bucy, 1961) and its 
combination with Markovian state and Bayesian inference.. The Multiple-State Kalman Filter (MS-KF, 
Velásquez, 1978) and the Dual-Kalman Filter (D-KF, Moradkhani et al., 2005) are integrated to model the 
state of the pandemic (the distribution of the population in the epidemic states) and the parameters of the 
differential equation epidemic model (SIR, SEIR, SEIMR/R-S,…).  
 
MS-KF is a methodology that allows to combine: i) the process of determination of possible Markovian states 
where can be a system (a pandemic process) with ii) response functions identified by Kalman Filter for each of 
the possible states of the system. The selection of the probability of the Markov system state is determined 
based on a model of Bayesian inference for multiple possible models. Basic examples are included to illustrate 
the concepts. 
 
D-KF is a methodology that allows simultaneously estimate the state of the process being analyzed and the 

parameters of the dynamic equations that govern the process. 
 
The learning process associate to integrated MS-KF and D-KF (thereinafter D-MS-KF) can be termed as Deep 
Learning process, since it assumes the process of identification of parameters as part of the dynamics of the 
system, without pre-set a response function as stationary and certain. The dynamics of the D-MS-KF allows to 
re-estimate the system response function considering the information contained in the data more recent, it may 
include the dynamic selection of the structure of the differential equations that explain the epidemic process.  
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EPIDEMIC STATE AND PARAMETER ESTIMATION 
USING DYNAMIC MACHINE LEARNING BASED ON  A 

DUAL MULTI-STATE KALMAN FILTER (D-MS-KF) 

 
 

1. THE STATE ESTIMATION PROBLEM 
 

At least two problems must be faced: 

i) In new pandemics, such as COVID-19, the structure of mathematical equations can be unknown 
and is therefore part of the problem to be solved  

ii) The system of measuring pandemic states can be very poor, mainly in the early pandemic and in 
countries with little capacity to widely measure the population and determine their epidemic 

status. 

 
The following image presents the deface between the “real” information (blue) and information 

known (yellow) at the beginning of the COVID-19 pandemic in the city of Wuhan in China. 
 

Source: Pueyo, Tomas. “Coronavirus: Why You Must Act Now”. 
https://medium.com/@tomaspueyo/coronavirus-act-today-or-people-will-die-f4d3d9cd99ca

COVID-19 - REAL CASES VS KNOWN CASES

 
 
The TRIAGE model supports the pandemic monitoring and control system with the aim of: 

i) Closing the gap between the real and the observed epidemic data, and 

ii) Provide the information needed to calibrate the mathematical models of epidemic simulation 
(SIR, SIER , .... ). 

 
This document describes the mathematical methodology proposed to face this problem. 
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2. UNCERTAIN DYNAMIC SYSTEMS 

 
To presents the methodologies for modeling Uncertainty Dynamic Systems, like COVID-19 pandemic,  

we defined a conceptual framework for discrete-time models of dynamic systems. The selected 
framework is common for three fundamental methodologies: i) Optimal Control; ii) Dynamic 

Programming, and iii) State Estimation. The two first methods are oriented to optimization and them 
are the results of the works of Lev Pontryagin (Pontryagin’s Maximum Principle, Pontryagin et al. 

1962) and Richard Bellman (Dynamic Programming) during the 1950s, after the contributions to 

Calculus of Variations by Edward J. McShane (1974).  State estimation are methodologies oriented 
to reconstruct the history (smoothing and filtering) and to forecast the state variables of the system, 

considering the uncertainty and partial observation of the system in the time-space domain, the most 
famous application in state estimation if the Kalman Filter methodology (Kalman, 1960). 

 

This common framework is based on: 
▪ Two types of variables:  

o State variables: are the set of variables that are used to describe the mathematical "state" 
of a dynamical system, that describes, enough about, the system to determine its future 

behavior in the absence of any external forces that affect the system.  

o Control variables: are the set of variables associated to external forces that can change the 
“natural” behavior of the dynamic system 

▪ A set of constraints that describes:  
o The dynamic relation between state variables on two consecutive periods (t and t+1)  

o The relations between control variables during each period t  
o The relation between state variables and control variables during each period t 

 

A linear dynamic system can be described mathematically with the following differential equation: 
 

tX(t) = f(t) X(t) + b(t) U(t) 
 

without loss of generality, the above equation can be approximated by the following difference 
equation 

 
X(t+1) = A(t)X(t) + B(t)U(t)  
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where the matrices A(t) and B(t) and L(t) are directly related to matrices f(t), b(t) y W(t).  
 

Dynamic Programming and Control Theory includes the concept of optimization by linking a 

performance function associated with state variables and control variables, for example 
R(X(t),U(t)), for the linear case it is 

 
R(X(t),U(t)) = c(t)T x(t) + d(t)Tu(t) 

 

where c(t) represents the cost/revenue vector for x(t) and d(t) the cost/revenue vector for u(t). 
 

xTX(t+1) = 
A(t)X(t) + B(t)U(t) 

ct+1
Txt+1

xt

ct-1
Txt-1

xt-1X(t+1) = 
A(t)X(t) + B(t)U(t) 

x0
X(t+1) = 

A(t)X(t) + B(t)U(t) 

ct
Txt

+ dt-1
Tut-1

+ dt
Tut + dt+1

Tut+1

ut-1 ut ut+1

DYNAMIC PROGRAMMING

 
 
The uncertainty may be incorporated into the model due to multiple reasons like unknown equations 

(inappropriate modeling), unknown parameters, etc.  Then the above equations may be writing as    
 

tX(t) = f(t) X(t) + b(t) U(t) + W(t) (t) 

 

or 
 

X(t+1) = A(t)X(t) + B(t)U(t) + L(t) (t) 

 

where L(t) are directly related to matrix W(t) and (t) represents an error (noise) element associate 

with each equation. The discrete version will be considered hereafter. 
 

In State Estimation, to complete the system, an observation equation is included, that is 
 

Z(t) = H(t)X(t) + (t) 

 

where Z(t) represents an observation vector, H(t) a measurement matrix, and (t) noise in the 

measurement vector. 
 

3. EPIDEMIC MODELING  

 
3.1. CONCEPTUAL FRAMEWORK 

 
The goal of epidemic control strategies is to reduce R0, which estimates the rate at which a disease 

can spread in a population. This can be achieved by reducing susceptibility or contact rates in the 
population or the infectiousness of infected populations. The potential effectiveness of medical 
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intervention by varying the infectiousness of infected populations and nonmedical interventions by 

reducing the contact rates in the population have been examined. In medical intervention, use of 
vaccines and/or antiviral agents for case of treatment can increase the recovery rate and reduce the 

death rate. On the other hand, in nonmedical interventions, reducing population contact rates 

through social distancing and travel restrictions can reduce the impact on the transmission process.  
 

GOAL OF EPIDEMIC MODELING

 
Control of an outbreak relies partly on identification of the disease parameters that lead to a 
significant reduction of the basic reproduction number R0 that may be function of several parameters 

of which , the recovery rate for clinically ill and , the transmission coefficient, are the most sensitive 

parameters. These two parameters can be controlled by medical intervention and nonmedical 

interventions.  
 

EPIDEMIC DIFFUSION MODEL AS FUNCTION OF R0
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The modeling of epidemics in a solidly developed area of scientific knowledge, widely studied based 
on simulation models like 

 
TRADITIONAL EPIDEMIC MODELS 

Model DESCRIPTION Reference 

SIR Susceptibility (S), Infection (I) and Recovery (R) 
Kermack & Mc Kendrick (1927) Jing  
(2018) 

SEIR Susceptibility (S), Exposure (E), Infection (I) and Recovery (R) Hethcote (2000) 
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TRADITIONAL EPIDEMIC MODELS 

Model DESCRIPTION Reference 

SEIRA Susceptibility (S), Exposure (E), Infection (I) and Recovery (R)  

SEIMR  
SEI3RD 

Susceptibility (S), Exposure (E), 3+1 Infection States (I3), Recovery 
(R) and Death (D) 

Grimm et al. (2020)  
Mejía Becerra et. al. (2020) 

SEIQR 
Susceptibility (S), Exposure (E), Infection (I), Quarantine (Q) and 
Recovery (R) 

Huang (2016) 

SIRS Susceptibility (S), Infection (I), Recovery (R) and Susceptibility (S) Cai (2015) 

 
An epidemiological model is defined based on differential equations that explain the evolution of the 

process without human intervention. These differential equations can be established based on the 

population (number of people) who are in a certain "epidemic" state or based on the fraction of the 
population that is in that state. The epidemic models are nonlinear systems of ordinary differential 

equations, traditionally this equations system is solved using simulation models based in a discrete 
approximation for continuous derivatives, be it over time or space. There are many possible schemes. 

These models are used to analyze several widely discussed (predefined) scenarios and provide 

evidence on their effectiveness and are not oriented to get the optimal solution of a mix of control 
policies. 

 
After analyzing the implementation of main (most known) epidemiological models (SIR, SEIR), it was 

decided to directly model discrete versions of differential equations as they maintain direct connection 
with biological parameters, which facilitates the connection of these parameters with socio-

demographic segments. 

 
Therefore, all epidemiological models considered should be formulated in one of the following terms.  

▪ The time unit of the differential equations is one day.  
▪ The states contain the fraction of the population in each state.  

▪ The time of the optimization model may be divided in periods of multiple days (one week, seven 

days). In this case, the integration of the differential equations must be made using calculated 
parameters.    

 
Examples of the epidemic states are showed in the next table. The models will be implemented using 

this nomenclature. The table includes the symbol used in the original models and the code used in 
the information system to reference the state.  

  
EPIDEMIC STATES - TABLE: MAE_STA 

MODEL 
SYMBOL 

EPIDEMIC 
STATE 

DESCRIPTION COMMENTS 

S SU Susceptible 
Population 

Those individuals who have not been exposed to the pathogen and 
are susceptible to being infected by it. 

E EX Exposed Population Those individuals who are in the latency state; that is, they have been 
inoculated by the pathogen but are not yet infectious 

I IN Infected Population 
In SIR and SEIR models is infected population. It must be the most 
critical state for infected people; this is important for models that 
have more than one epidemic states to describe the infection process.  

I0 I0 
Asymptomatic 
Infectious 

Those individuals in the population who have been inoculated by the 
virus are infectious but have not developed symptoms. Those 
infected in this state rarely learn that they have been infected. 

I1 I1 
Moderate 
Symptoms 
Infectious 

Those individuals in the population who are infectious and have mild 
or moderate symptoms. They are those who can be given 
management of the disease at home. 

I2 I2 
Severe Symptoms 
Infectious 

Those individuals in the population who are infectious and have 
severe but not critical symptoms. Individuals present in this state 
require hospitalization. 

I3 IN 
Critical Symptoms 
Infectious 

It must be the most critical state for infected people; this is important 
for models that have more than one epidemic states to describe the 
infection process. In SIR and SEIR models is infected population 
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EPIDEMIC STATES - TABLE: MAE_STA 

MODEL 
SYMBOL 

EPIDEMIC 
STATE 

DESCRIPTION COMMENTS 

R RE 
Recovered 
Population 

Those individuals recover from infection, having developed 
antibodies. In most of the models they cannot be re-infected. 

 ED Epidemic Dead Individuals who fail the infection and die. 

 ND Natural Dead Individuals who die by other reason different to the epidemic 

 NP New Population Individuals coming from an exogenous macro-region. 

 
3.2. SIR: EPIDEMIC MODEL   

 

The SIR model is the basic model in epidemic modeling (Kermack and Mc Kendrick, 1927). SIR 
process, starting with a susceptible host who becomes infected, the class of infection grow for the 

infected individuals to be able to transmit the infection to susceptible. When the infected individual 
is no longer able to transmit infection to susceptible individual, the infected individual is removed 

from the cycle of diseases transmission in the population. This model is based on the following 

assumption: 
 

Then,  the basic SIR model describes the epidemic with three states:  
S  Susceptible: initially covers all population that potentially can be infected (SU)  

I  Infected: Population that has been infected (IN) 
R  Recovered: Recovering population (RE) 

The diagram shows the behavior of S(t), I(t), and R(t) when they are normalized to total of 

population (TPOB) equal to 1. The biological parameters used in SIR and SEIR model are described 
below. 

 
SIR MODEL - BIOLOGICAL PARAMETERS 

Parameter Description 
Equation Measure 

Unit  

 Contact Intensity – Exogenous Parameter  peo-day 

 Probability of transmission per contact intensity (infectivity)   

 Recovery rate for clinically ill   fpo/day 

 Epidemic death (mortality) rate    fpo/day 

N Natural mortality rate   fpo/day 

  The latency period of the virus before developing  day 

 Inverse virus latency period 1/  1/  

 Inverse contact intensity  infectivity       

 Relative removal rate  /  

R0 Basic reproduction ratio/number   

 

The diagram resumes the standard SIR epidemic model. 
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Susceptible-Infectious-Recovered (SIR) 
Epidemic Model

S I R  I  S   I

 
SIR model is represented based on three differential equations based on proportions of people in 

each state (the ratio between the people in a state with the initial population TPOB). The 
measurements between parentheses. 

 

S(t)/t (fpo/day) = -  (1/fpo-day)  I(t) (fpo)  S(t) (fpo) 

 

I(t)/t (fpo/day) =  (1/fpo-day)  I(t) (fpo)  S(t) (fpo) -  (fpo/day)  I(t) (fpo)  

 

R(t)/t (fpo/day) =  (fpo/day)  I(t) (fpo) 

 

where S(t), I(t), R(t) represent the population of susceptible, infected, and recovered individuals, 

respectively. Adding these equations, the following condition must be hold  

 

S(t)/t + I(t)/t + R(t)/t = 0 

 

Additionally, SIR can be extended with other epidemic states for a more complete description of the 

system/epidemic:  
NP  New population entering the system, as people from abroad who in many cases are the ones 

who cause the epidemic (NP).   
ED  People who die due to the epidemic (these people die regardless of the management of the 

epidemic (D).   

ND  People who die from natural death (N) 
 

ND and ED states should be included if it wants to account for the resources consumed by people 
who die, who are killed due the epidemic and due by causes other than the epidemic.  

 
For a more general formulation it is included the exogenous variable NPX(t) tha represents the 

proportion of people arriving from an exogenous system, may be births or people arriving from a 

foreign country/region. The value of NPX(t) is a border condition with the foreign system over any 
value of t it is calculated taking as reference the initial population TPOB. This adjustment may be 

important in regions, for example high people exchange rates islands dedicated to tourism. Next table 
shows the parameters used to this modeling. 
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EXOGENOUS SYSTEM PARAMETERS 

Parameter Description 
Measure 

Unit 

E Exposed rate coming from the exogenous system fpo/day 

S Susceptible rate coming from the exogenous system fpo/day 

I Infectious rate coming from the exogenous system fpo/day 

R Recovered rate coming from the exogenous system fpo/day 

 
Next diagram shows the epidemic system modeled. 

STATE TRANSITION DIAGRAM - SIR MODEL

STATE DESCRIPTION

NP New Population 

SU Susceptive Population

IN Infective Population

RE Recovered Population

ND Natural Dead

ED Epidemic Dead

RE

SU IN

EDND

NP

  I  S

  I

z  I

  R  S

S  NP I  NP

R  NP

 
 
Then, the differential SIR equations must be adjusted: 

 

S(t)/t = -   I(t)   S(t)  + S  NPX(t) - N  S(t)  

 

I(t)/t =  (I(t)   S(t) – ( + z)  I(t) + I  NPX(t) 

 

 R(t)/t =    I(t)  - N  R(t) + R  NPX(t) 

 

D(t)/t =   I(t)  

 

N(t)/t =  N  S(t) +  N  R(t)  

 

where N represents the natural mortality rate and st the rates coming from the exogenous system 

to the state st. 
 

If NPX(t)=0 the model meets the hypothesis that at all times 

 
S(t) + I(t) + R(t) + D(t) + N(t) = 1 

 
If NPX(t) is different from zero the previous equation must be adjusted as  

 

S(t) + I(t) + R(t) + D(t) + N(t) = 1 + q[0,t] NPX(q) q 

 
To simulate the process the border conditions at the beginning of the simulation horizon are: S(0), 

I(0), R(0), D(0) and NPX(t), for all t.  
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Assuming NPX(t) equal to zero, the ratio  = / is called the relative removal rate. Thus, dynamics 

of infectious depends on the following ratio:  

 

R0 = S(0)  / 

 

where R0, called the basic reproduction ratio/number, is defined as the number of secondary 
infections produced by a single infectious individual during his/her entire infectious period. The role 

of the basic reproduction number is especially important. However, the following mathematical 
analysis describes how the basic reproduction number depends on the host population and the 

infected host. 

 

At time t = 0, I/t can be written as 

 

I/t = (R0 – 1)    I(0) 

 

if R0 > 1 then I/t > 0 and therefore the disease can spread; but if R0 < 1 then the disease dies 

out.  
 

3.3. SEIMR/R-S GENERAL EPIDEMIC MODEL  
 

SEIMR/R-S epidemic model (Velasquez et al., 2021) is supported on the basic equations of the 

SEIMR model including the effects of considering the development of the epidemic in a territory 
(macro-region) that includes multiple regions in which the population socio-demographic segments 

are distributed in a non-homogeneous manner. 
http://www.doanalytics.net/Documents/DW-2-ITM-SEIMR-R-S-Epidemic-Model-Theory.pdf   

 

SEIMR/R-S corresponds to a generalized mathematical model of pandemics that enhances traditional, 
aggregated simulation models when considering inter-regional impacts in a macro region (conurbed); 

SEIMR/R-S also considers the impact of modeling the population divided into socio-demographic 
segments based on age and economic stratum (it is possible to include other dimensions, for 

example: ethnics, sex, … ). SEIMR/R-S epidemic model was carried out in a JAVA program. This 
program may be used by the organizations that considers the SEIMR/R-S will be useful for 

management the COVID-19 pandemic.  

 
SEIMR/R-S is the core of the SEIMR/R-S/OPT epidemic management optimization model that 

determines optimal policies (mitigation and confinement) considering the spatial distribution of the 
population, segmented socio-demographically and multiple type of vaccines. The formulation of 

SEIMR/R-S/OPT is presented in PART III: SEIMR/R-S/OPT Epidemic Management Optimization Model 

(Velasquez-Bermudez 2021) describing its implementation in an optimization technology, like GAMS,  
AMPL, PYTHON, … .  

http://www.doanalytics.net/Documents/DW-3-OPCHAIN-Health-Optimization-Epidemic-Model.pdf  
 

SEIMR/R-S can be understood and used by any epidemiologist, and/or physician, working with SIR, 
SEIR or similar simulation models, and by professionals working on the issue of public policies for 

epidemic control. 

 
The examples of the theory will be presented using the SIR model, but the implementation must be 

for the SEIMR/R-S epidemic model. 
 

4. MATHEMATICAL METHODOLOGIES  

 
This section presents a summary of methodologies related to technical aspects of this document. 

http://www.doanalytics.net/Documents/DW-2-ITM-SEIMR-R-S-Epidemic-Model-Theory.pdf
http://www.doanalytics.net/Documents/DW-3-OPCHAIN-Health-Optimization-Epidemic-Model.pdf
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4.1. MARKOV CHAINS  
 

4.1.1. FUNDAMENTALS 

 
A process of Markov, named due to the work carried out by the Russian mathematician Andréi Márkov 

(1856-1922), is a dynamic random phenomenon for which the Markov property is true: it has no 
memory, which is a process for which the conditional probability on the present, the future and the 

past states of the system are independent of the path. 

 
The practical importance of the Markov property is that it can be used to build statistical models of a 

stochastic process, in such a way to allow transit by a group of states in which the influence of going 
through a state declines to the lar the time go. 

 
The term Markov chain is used to imply that a Markov process occurs in a discrete state space (infinite 

or countably). Usually, a Markov chain would be defined on a discrete set of periods (i.e., a Markov 

chain discrete time); although some authors use the same terminology where "time" and/or states 
are continuous values. Two simple examples of chains Markovianas are presented in the figure. 

 

HYDROCLIMATIC PROCESS

MARKOV CHAIN

MARKET PROCESS

 
The chains in the figure are related to two different systems: a market of assets and a hydro-climate 

process; each of them can be modelled as a discrete State and discrete time, or as, continuous state 
and continuous time. The decision of as modeling takes place depends on the data, the specific 

problem, and the modeler. 

 
Two types of Markov models can be considered: 

 
▪ Markovians: the transition probabilities are supposed to be the constant over time, which can 

be expressed as 

P(xt+1 = j | xt = i) = i,j 

 
where xt represents the State of the system during the period t, P(A|B) the conditional 

probability of A conditioned in B and i,j the probability of a transition from state i to state j. 

 
▪ Semi-markovians: the transition probabilities between states vary as to pass more periods; an 

example is the modeling of the life expectancy, the risk of death, whose probability increases 

with age. 
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P(xt+1 = j | xt = i) = i,j(t) 

 

It can say that reality is semi-Markovian, since almost all processes are dynamic random path, and 
how the system response a can evolve cyclically or trend over time 

 
A Markov process required: 

▪ States: The conditions in which the system can be found 
▪ Transition Probability: The probability of moving from a current state i to state j in a transition, 

or period, which can be stationary or variant over time. 

The diagram presents the elements of a Markov system. 
 

STATE TRANSITION DIAGRAM FOR A MARKOV CHAIN MODEL

STATE TRANSITION MATRIX 

 
The previous two features should be identified for modeling a process such as Markov: the states, 

which in many cases are not readily apparent and may come from a study of segmentation that can 
be done with methodologies of ML; subsequent to the definition of the states, required a sample 

that permits to estimate transitions between states, the process will be more complicated if it 

considers dynamic transition matrices. 
 

One of the current uses of Markov theory is to represent the behavior of persons in their relations 
with an organization. But it can also represent the different states in which a system is located, or an 

element type within a system. 

 
4.1.2. MARKOV CHAIN DECISION PROCESS 

 
Decision-making processes based on a Markov (Markov Chain Decision Process, MCDP), today also 

known as Reinforcement Learning, are the goal of the mathematical modeling of the process of 
decision-making. 

 

These processes include the actions trying to affect the stochastic process, understood as the path 
through the system states. A clear application of these methodologies may be associated with the 

decisions of companies to try to manage the lifecycle of their customers. To achieve this included: 
1. The concept of transition probabilities conditional decisions 

2. The remuneration/gain/loss to visit a specific state. 
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For a commercial enterprise, the following diagram describes a MCDP which are: 

1. Three states for a client: S1 (first time), S2 (repeated purchase) y S3 (loyal customer). 
2. The actions of control of the decision-maker are defined for each state:  

▪ S1: special offer or nothing 

▪ S2: club membership or nothing 
▪ S3: nothing  

3. Each decision has different transition probability and remuneration. 
 

MARKOV CHAIN DECISION PROCESS
(REINFORCEMENT LEARNING)

 
The objective of the modeling is to implement a Markov model that maximizes the profits, in the 
short/long term, of the decision-maker. Decisions are made in such a way that when the client is 

coming into a state i a decision D(i) is made.  

 
4.2. BAYESIAN INFERENCE 

 
The Bayesian inference is a method based on Bayes theorem which is used to update the probability 

of a hypothesis given the information that is acquired when more evidence or information is available. 
Bayesian inference has found application in a wide range of activities, including science, engineering, 

philosophy, medicine, sport, and law. 

 
The Bayes theorem solves the problem known as "probability inverse", that is rating probabilistically 

possible conditions that govern the event which has been observed. The followers of Bayesian 
inference say that the significance of the inverse probability lies in that it is that really matters to 

science, given that it seeks to draw general conclusions (state laws) from the objectively observed, 

and not vice versa 
 

The Bayes theorem expresses the conditional probability of a random event B given in terms of the 
distribution of conditional probability of event B given S and the marginal probability distribution of 

S. It is mathematically formulated as:  

 
Considering {S1, S2, S3, … ST} a set of events/states, mutually exclusive and collectively exhaustive, 

such that the probability of each Si is non-zero (0) and B one event either that the conditional 
probability given an Si event are known, P(B|Si); then, the conditional probability of an Si event 

given the event B, P(Si|B), is given by the expression: 
 

P(Si|B) = P(Si)  P(B|Si) / P(B) 
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where 

P(Si) Probability a priori of Si  
P(B|Si) Probability a priori of B given Si  

P(Si|B) Probability a posteriori of Si given B 

P(B) Probability of B 
 

The Bayes theorem can be written as (where P(x) represents the probability function of x): 
 

P(Model|Data) = P(Model)  [ P(Data|Model) / P(Data) ] 

or 

Probability a Posteriori =  

Probability a Priori  Likelihood Function (Data) / Probability (Data) 

 

If a process is being observed through multiple (N) models potentially valid for state identification, 
and/or parameters, the following equation is met for each model n: 

 

t(Modeln|z(t)) = t-1(Modeln|z(t-1))  (z(t)|Modeln) / (z(t))  

 

where (z(t)) represents the probability function of measurement z(t), (z(t)|Modeln) the 

likelihood function of z(t) given the model n as the true model, and t(Modeln|z(t)) the probability 

of that the model n is the true model when the observations until time t have been processed. 
 

If one of the N models is considered to be true, then the sum of the probabilities should be equal to 

1, allowing the value of (z(t)) to be calculated as a normalization constant common for all 

probabilities. 

 

(z(t)) = n=1,N t(Modeln|z(t)) 

 
The Bayesian approach is particularly important in the dynamic analysis of a data streams, and by 

itself implies a process of deep learning from data. 
 

5. STATE ESTIMATION 

 
In Wikipedia, in control theory, a state estimator is a system that provides an estimate of the internal 

state of a given real system, from measurements of the input and output of the real system. It is 
typically computer-implemented and provides the basis of many practical applications. 

 
Knowing the system state is necessary to solve many control theory problems; for example, stabilizing 

a system using state feedback. In most practical cases, the physical state of the system cannot be 

determined by direct observation. Instead, indirect effects of the internal state are observed by way 
of the system outputs. A simple example is that of vehicles in a tunnel: the rates and velocities at 

which vehicles enter and leave the tunnel can be observed directly, but the exact state inside the 
tunnel can only be estimated. If a system is observable, it is possible to fully reconstruct the system 

state from its output measurements using the state observer. 

https://en.wikipedia.org/wiki/State_observer  
 

The application for estimating the true state of a pandemic is direct. 
 

5.1. FRAMEWORK 

 
The approach for the State Estimation (SE) is supported on a conception of the stochastic processes 

where the random variables are clearly differentiated of their measures, being understood that the 

https://en.wikipedia.org/wiki/State_observer
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modeler has data of the measurement system that may be different from real values of the random 

variables. This differentiation is essential to understand the operation of the systems and systems 
used for observation. 

 

Therefore, all available observations are considered as random variables, having their measure 
information, but which, by reason of the randomness of the measuring system, are subject of 

precision errors; therefore, assume them as certain (deterministic) induces errors; moreover, there 
might be more than one measure for a random variable, obtained by different systems of 

measurement. 

 
Two types of noise (errors) are considered in state estimation modeling: 

▪ (t), errors due to the modeling of the system, reflecting the uncertainty of knowledge of 

functions (equations and/or parameters) that determine the behavior of the system that is 
modeling; and 

▪ (t), measurement errors that come from the precision with which the random variables 

associated with the system are measured. 

 

From this point of view, the conventional statistical models only consider one type of error, (t), 

which integrates modeling errors and measurement, whereas the state estimation modeling differs 

clearly the two types of errors. This may be the principal advantage of state estimation modeling 
over the traditional statistical modeling.  

 

Another advantage is the possibility of make hypothesis about the dynamics of variation of the 
parameters of the mathematical models; from this point of view the following aspects must be 

considered: 
▪ The estimators of the parameters of a system are random variables dependent on the 

observations and should therefore be subject to adjustment in accordance with the new 

information is arriving. 
▪ A system parameters vary over time, since many of them change as a result the evolution, that 

may be technical, physical, economic, social and/or natural. 
 

5.2. MATHEMATICAL FORMULATION  

 
It should be noted, for the ease of the reader, that the notation X(t), capital letter X, refers to the 

random variable and x(t1|t) refers to the estimate of X(t1) given the information received up to the 
time t.  

 
Consider a system whose state at any moment of time t is synthesized based on the value of a set 

of representative variables grouped in the vector of State X(t). Exogenous actions to the system are 

made through a set of control variables grouped into vector U(t). A system of differential equations 
that represent the inter-temporal dynamics of the system can be formulated based on these 

definitions: 
 

tX(t) = Ft [X(t), U(t)] 

 

where Ft[X(t),U(t)] is a vectorial function. The previous system of equations has as boundary 
condition the initial state, X(0). This is: 

 

tX(t) = Ft[X(t), U(t); X(0)] 

 

The function Ft[X(t),U(t)] represents, accurate or approximately, the dynamics of the system. In 

the case of an approximation should be considered errors of the modeling of the system by the vector 
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of noise in the modeling (t). Keep in mind that if there are no errors in the system modeling, the 

problem of estimation of state does not make sense since the vector function Ft[X(t),U(t)] describes 

exactly the trajectory of the system. Under this consideration, the dynamic equation becomes a 

stochastic differential equation and is reformulated as 

 

tX(t) = Ft[X(t), U(t), (t); X(0)] 

 

The state variables X(t) are measured through a set of variables that are grouped in the observation 
vector Z(t). The relationship between the state variables and the observation variables are 

represented as: 

 
Z(t) = Ht[X(t)] 

 
where Ht[X] is a vectorial function.  

 

If we consider that the observation system is not perfect, either by modeling represented in Ht[X]  
or for the accuracy of the measurements, it is necessary to include errors in the equation represented 

by the vector (t) of noise in observation. Then the equation is 

 

Z(t) = Ht[X(t), (t)]. 

 
The purpose of the state estimation modeling, as its name implies, is to make estimates x(t) of the 

state vector X(t) from the vector of observations Z(t) and from the vectorial function Ft[X(t), U(t), 

(t); X(0)] that  represents, approximately, the dynamic of the system. 

 

6. KALMAN FILTER 

 
Below, the mathematical basics of state estimation modeling using the theory developed by R.E. 

Kalman and Bucy R.S., commonly known as the Kalman Filter (KF, Kalman filter), are presented 
following the Wikipedia information. 

 
In statistics and control theory, Kalman filtering, also known as Linear Quadratic Estimation (LQE), is 

an algorithm that uses a series of measurements observed over time, containing statistical noise and 

other inaccuracies, and produces estimates of unknown variables that tend to be more accurate than 
those based on a single measurement alone, by estimating a joint probability distribution over the 

variables for each timeframe. The filter is named after Rudolf E. Kalman, one of the primary 
developers of its theory. 

 

KF has numerous applications in technology and engineering. Initially the real-life applications were 
for guidance, navigation, and control of vehicles, particularly aircraft, spacecraft, and dynamically 

positioned ships. Furthermore, the KF is a widely applied concept in time series analysis used in fields 
such as signal processing and econometrics. KF also are one of the main topics in the field of robotic 

motion planning and control and can be used in trajectory optimization. The KF also works for 
modeling the central nervous system's control of movement. Due to the time delay between issuing 

motor commands and receiving sensory feedback, use of the KF supports a realistic model for making 

estimates of the current state of the motor system and issuing updated commands. Other field of KF 
applications is to forecast hydroclimatic variables.  

 
6.1. MATHEMATICAL FORMULATION 

 

We consider linear vectorial functions Ft[.] and Ht[.]: 
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1. State Equation: 

 

tX(t) = f(t) X(t) + b(t) U(t) + W(t) (t)  

 

where  
X(t) system state vector (n,1) 

f(t) transition matrix (n,n) 
U(t) control vector (k,1) 

b(t) control interaction matrix (n,k) 

(t) vector of noise in modeling (p,1) 

W(t) interaction of noise matrix (n,p). 
 

Without loss of generality, the above equation can be approximated by means of a difference 
equation 

 

X(t+1) = A(t)X(t) + B(t)U(t) + L(t)(t) 

 
where the matrices A(t), B(t) and L(t) are directly related to matrices f(t), b(t) y W(t). The discrete 

version will be considered hereafter. 
 

2.   Observation Equation: 

 

Z(t) = H(t)X(t) + (t) 

 

where  
Z(t) observation vector (m,1), 

H(t) measurement matrix  (m,n), 

(t) noise in the measurement vector (m,1). 

 

xt

ut

xt-1

CONTROL 
VARIABLES

STATE 
VARIABLES

STATE 
VARIABLES

NASA CONTROL CENTER

PRODUCTIVE SYSTEM

tX(t) = 
Ft[x(t),u(t)|t]

INDUSTRY DYNAMIC PROCESS OPTIMIZATION
DYNAMIC PROGRAMMING

PHYSICAL MODEL

Set of differential equations 
(or differences equations) 
that explain the process 
based on physical laws.

MEASUREMENT 
SYSTEM 

z(t) = Ht[x(t)]

 
6.2. STATISTICAL HYPOTHESIS  

 
The development of the theory of the Kalman filter assumes the following statistical assumptions: 

 
1.  Initial state of the system X(0): 

▪ Expected value: 

x(0) = E[X(0)] 
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▪ Variance-covariance matrix: 

(0) = E[{X(0)-x(0)} {X(0)-x(0)}T] 

 

2. Noise of dynamic modeling system (t): 

▪ Expected value: 

E[(t)] = 0 

▪ Variance-covariance matrix: 

E[(t)(t)T] = Q(t) 

  

where Q(t) is a diagonal matrix. 
 

3. Noise of observation system (t): 

▪ Expected value: 

E[(t)] = 0 

▪ Variance-covariance matrix: 

E[(t)(t)T] = R(t) 

 

4. Control Vector U(t): deterministic. 
 

5. A(t), B(t), L(t) and H(t): with deterministic components. 

 
Under the above assumptions the estimate process developed by Kalman [5] guarantees estimators 

x(t) of the average of the vector X(t) that minimizes the trace of the matrix of variance-covariance 

(t) 

 

(t) = E[{X(t)-x(t)} {X(t)-x(t)}T] 

 

If we also consider that the random components of the system, X(0), (t) and (t) follow Gaussian 

probability distribution functions, we will have the following features for x(t): 
▪ Best linear unbiased estimators (BLUE), 

▪ Maximum likelihood estimators,   
▪ Bayesian estimators a posteriori.  

 

For the variance-covariance matrices should be noted: i) R(t) can be estimated through 
measurements; while ii) Q(t) is more difficult to estimate, given that it has no access to the state 

X(t). 
 

6.3. ESTIMATION PROCESS 

 
The estimation procedure proposed by Kalman provides the best Bayesian estimator of the expected 

value of X(t) conditionate on: 
 

1. The information processed up to time t 

 
U(tp) = { U(1), U(2), ... U(tp) } 

Z(tp) = { Z(1), Z(2), ... Z(tp) } 
 

information that it synthetized as I(tp) 
 

I(tp) = {Z(tp), U(tp)} 

 

2. The initial estimates (t=0) of the state vector and the variance-covariance matrix, x(0) and (0). 
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The estimate of X(t) given the information to instant tp is denoted as: 
 

x(t/tp) = E[X(t) | Z(tp), u(tp), x(0), (0)]  

 

Similarly, the estimator of the variance-covariance matrix is 
 

(t/tp) = E[{X(t)-x(t/tp)} {X(t)-x(t/tp)}T] 

 

the a priori estimates for the system are defined as: 
 

x(0/0) = x(0)  

(0/0) = (0).  

 

The Kalman filter defines a sequential process of estimation from the combination of Bayesian priori 

information up to time t-1 with the information subsequently obtained at the moment t. This process 
is summarized in six steps: 

 

1. Estimate a priori of the variance-covariance matrix (t): 

 

(t/t-1) = A(t-1)(t-1/t-1) AT(t-1) 

 + L(t-1)Q(t-1)L(t-1) 
 

2. Estimation ex-post of (t): 

 

(t/t) = (t/t-1)[I - HT(t){H(t)(t/t-1)HT(t) 

 + R(t)}-1H(t)](t/t-1) 

 

3. Calculation of the so-called gain matrix M(t): 
 

M(t) = (t/t)HT(t)R(t)-1 

 

4. A priori estimation of the expected value of the state vector X(t): 
 

x(t/t-1) = A(t-1)x(t-1/t-1) + B(t-1)U(t-1) 
 

5. Estimation of the prediction residuals r(t): 
 

r(t) = Z(t) - HT(t)x(t-1/t-1) 

 
6. A posteriori estimation of the expected value of X(t): 

 
x(t/t) = x(t/t-1) + M(t)r(t) 
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KALMAN FILTER
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Ht[.] + (t)
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-
r(t)

M[.]
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U(t)
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Gain Matrix

Errors

MeasuresReal State

 
 
In the previous process, steps 1, 2, and 3 the calculations for the estimators of the variance-

covariance matrix-related (t/tp) and for the determination of the gain matrix M(t) can be made 

prior to the obtaining of the observations and are so-called "off-line" calculations. Steps 4, 5 and 6 

are dependent on the values of Z(t) and correspond to the so-called process of "on-line". This feature 
is related to the hypothesis of linearity of equations. 

 

By way of synthesis, we will define the set of estimators (t/t) as 

 

(t/t) = {x(t/t), (t/t)} = BAYES[(t/t-1), Z(t), U(t), Q(t), R(t)]  

 

where the operator BAYES[.] represents the combination of Bayesian information proposed by 
Kalman. 

 
6.4. SMOOTHING, FILTERING & FORECASTING 

 

The stochastic processes where the random variables are clearly differentiated of them measures 
allows the modeler to improve knowledge of the past based on the evidence of the present. It can 

only be realized by a combination of forward and backward processes, which is known as smoothing. 
The optimal causal solution is also known as the Wiener filter. 

 

If X(t), capital letter X, refers to the random variable and x(t1|t) refers to the estimate of X(t1) 
given the information received up to the time t. The relationship between t1 and t defines several 

types of process:  
▪ Smoothing (t1<t): It involves predicting a posteriori the state variable in the past t1, before t.  

▪ Filtering (t1=t): It involves the correction (filter) of the prediction of the state variables in t, 
while reaches the information. 

▪ Forecasting (t1>t): It involves the prediction of the State variables for periods t1 after the 

present t. 
The last two functions are the most used; however, the prediction of the past makes perfect sense 

when we recognize that in the past we only had estimates of the state variable (we never know the 
real value), which can be improved by processing the information coming later to the prediction 

made. 

 
Detailed information about the mathematical formulation of smoothing process is founded in Einicke 

(). 
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Smoothing is of fundamental importance in the process of estimating the state of the epidemic, 
because due to the type of process, it is necessary to reconstruct, in the best possible way, the history 

of the epidemic since an inappropriate interpretation will give rise to bad decisions since they are 

made based on measures that do not reflect the reality that is happening. 
 

6.5. STATE ESTIMATION THROUGH OPTIMIZATION 
 

The a priori estimators x(t/t-1) can be maximizing the a priori likelihood function of X(t) that, in 

the case of a multivariate normal distribution functions, can be written as 
 

{2|Q(t)|}-n/2 Exp[w(t)TV(t-1)-1w(t)] 

 
where 

 

w(t) = X(t) - A(t-1)x(t-1/t-1)-B(t-1)U(t-1) 
 

V(t) = A(t)(t/t)A(t)T + L(t)Q(t)L(t) 

 
The estimators x(t/t-1) are obtained maximizing the argument of the exponential function, which 

can be written as 

 
X(t)TV(t)-1X(t) 

- 2{A(t-1)x(t-1/t-1) - B(t-1)U(t-1)}TV(t)-1X(t) 
-{A(t-1)x(t-1/t-1)-B(t-1)U(t-1)}TV(t)-1 

{A(t-1)x(t-1/t-1)-B(t-1)U(t-1)} 

 
that is a quadratic function for X(t), where the last term is constant. 

The estimators x(t/t) can be interpreted as maximum likelihood estimators for X(t). Based on the 
Bayes theorem, the probability of X(t) given the information obtained up to time t, {Z(t),Z(t-1),..}, 

can be written as: 
 

Probability[X(t)|Z(t),Z(t-1),...]  

= Probability[Z(t)|X(t),Z(t-1),...] 
 Probability[X(t)|Z(t-1),Z(t-2),...]/Probability[Z(t)] 

 
The likelihood function is  

Probability[X(t)|Z(t), Z(t-1), Z(t-2), ...] 

 = (2)-n-m/2 |R(t)|-m/2 |(t/t-1)|-n/2 

Exp[ {Z(t)-H(t)X(t)}TR(t)-1{Z(t)-H(t)X(t)} 

 - {X(t)-x(t/t-1)}T(t/t-1)-1{X(t)-x(t/t-1)} ] 

 

 
The estimators x(t/t) are obtained by maximizing Probability[X(t)|Z(t),Z(t-1),Z(t-2),...] with 

respect to X(t), what is achieved to maximize the argument of the exponential function which can 

be written as 
 

X(t)T{H(t)TR(t)-1H(t)+(t/t-1)-1}X(t) 

- 2{Z(t)TR(t)-1H(t)+x(t/t-1)T(t/t-1)-1}X(t)  

+ Z(t)TR(t)-1Z(t) + x(t/t-1)T(t/t-1)-1x(t/t-1)  

 

that is a quadratic function for X(t), in which the latter two terms are consistent. 
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The vision of the process from the point of view of optimization allows to extend the concepts of KF 
to face two new types of problems: 

 

1. Assume probability distributions different than normal multivariate; in this case the likelihood 
function must be replaced in the optimization model for those corresponds according to the 

assumed for probability distribution multivariate function.  
 

2. Another extension of KF is related to the estimation of state variables that must meet a set of 

conditions that determine the feasible region in which there are valid solutions for the state 
vector. In this case the estimation process should be adjusted in such a way to have estimators 

feasible and consistent. The restrictions for the vector of state variables may be expressed as: 
 

G[X(t),U(t)] = 0 
 

where is G[.] a vector function. The optimization problem is 

 
Maximizar 

X(t)TV(t-1)-1X(t) 
 - 2{A(t-1)x(t-1/t-1)-B(t-1)U(t-1)}TV(t-1)-1X(t) 

sujeto a: 

G[X(t),U(t)] = 0  
 

The structure of the constraints determines the complexity of the optimization problems. In the case 
of linear restrictions, the problems are of quadratic programming.  

 
 

From the statistical point of view, the introduction of restrictions alters the calculation a priori and a 

posteriori of estimates of X(t); the calculation of estimates of the state vector variance-covariance 
matrices is also altered. 

 
The problem is simplified if considered x(t/t) and x(t/t-1) as a result of a process of constrained  

weighted least squares, where the variance-covariance matrices correspond to matrices of weighting 

that implicitly represent the credibility that has the a priori information. The estimators obtained in 
this case are consistent, comply with the restrictions, but are not BLUE estimators, because the 

predictions have bias.  
 

6.6. VARIATIONS AND EXTENSIONS OF KALMAN FILTER 

 
An advanced predictive analytics computing platform that allows the results of an industrial/natural 

process (described based on partial differential equations) to be projected in advance from real-time 
input variables (measurements) can be based on the combination of the methodological principles of 

Machine Learning (ML) and State Estimation (SE), is a means of implementing machine learning 
processes (cognitive robots) to understand the behavior of an industrial/physical system using 

advanced algorithms, based on the fundamental concepts that support the Kalman Filter coupled 

with Bayesian modeling of dynamic systems. This process is called ML-KF. 
 

Specifically, an effective algorithm for early identifying the results of an industrial/natural process 
based on real-time input variables should consider a combination of the following methodologies: 

i) Kalman Filter (KF, Kalman, 1960) 

ii) Extended Kalman Filter (EKF, Julier, S. J. and. Uhlmann, 2004) 
iii) Dual Kalman Filter (D-KF, Moradkhani et al, 2005) 
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iv) Bayesian Model Combination (BMC, Rodríguez-Iturbe et al. 1978) 

v) Multiple State Kalman Filter (MS-KF, Velásquez, 1978) 
 

The mixture of the above methodologies allows to identify: 

i) KF: The value of system state variables when the structure and parameters of differential 
equations governing system behavior are known for certain. It corresponds to the basic theory 

formulated by R. E. Kalman, which is limited to systems of linear equations. 
ii) EKF: The value of system state variables when the structure and parameters of differential 

equations are known for certain. Extend Kalman's theory to systems of nonlinear equations. 

iii) D-KF: The response functions (parameters of the differential equations) identified for each of the 
possible system states. This approach is useful when the parameters of differential equations are 

not precisely known. 
iv) BCM: The selection of the model (system of differential equations) that best represents how the 

system responds. This approach is useful when neither the structure nor the parameters of 
differential equations are known for certain. 

v) MS-KF: Possible Markovian states in which a system/process can be (e.g., stable, stochastic 

transient, or structural transient) involving different forms of system response. The selection of 
the probability of the state in which the system is located is determined based on a Bayesian 

inference model. This approach allows to detect disruptive changes in system behavior in order 
to adjust response functions according to information obtained from real-time data. 

 

The ML-KF associated learning process is of the Deep Learning type, as it assumes system dynamics 
as part of the parameter identification process, without pre-establishing a stationary and certain 

response function. The dynamics of the MS-KF/D-KF allow the system response function to be fully 
re-estimated considering the information contained in the latest (real-time) data. 

 
6.7. MODELING EPIDEMIC PROCESS  

 

Kalman's methodology can be used for estimating the state of the pandemic, understood as the 
number of people (or fraction of the population) found in each epidemiological state of the differential 

equation model selected to describe the pandemic. 
 

Smoothing is fundamental in the process of estimating the state of the epidemic, because due to the 

type of process, it is necessary to reconstruct, in the best possible way, the history of the epidemic 
since an inappropriate interpretation will give rise to bad decisions since they are made based on 

measures that do not reflect the reality that is happening. In the case of the pandemic, “predicting 
the past” can be much more important than “predicting the future”. 

 

This is easy to visualize when you look at the comparison between known cases and the actual cases 
reported in Hubei at the beginning of the COVID-19 pandemic. 
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FORECASTING THE EPIDEMIC IN THE PAST

 
 

Applying Kalman's filter to the pandemic can be done in accordance with the following procedure: 
 

1. State variables, X(t), are associated with epidemiological model states. For the case of the SIR 
model these are: susceptible (S), infected (I), recovered (R), deaths due to infection (D) and 

deaths by other causes (N). 

 
2. The control variables, U(t), correspond to the social policies of population confinement that are 

applied to control the epidemic. They depend on each case. In the Colombian case they depend 
on temporary measures taken by local governments which vary in details of the form. 

 
3. The basic differential equations are those corresponding to the selected model, in the case of the 

SIR are: 

 

S(t)/t = -   I(t)   S(t) - N  S(t)  

 

I(t)/t =  (I(t)   S(t) – ( + z)  I(t)  

 

 R(t)/t =    I(t)  - N  R(t)  

 

D(t)/t =   I(t)  

 

N(t)/t =  N  S(t) +  N  R(t)  

 
4. Basic differential equations must be adjusted to include the effects of the control in the dynamic 

process.  This process is not simple, as it should be carefully analyzed how control policies relate 
to the epidemic. For the present case, reference is made to the modelling reported by the Mayor 

of Bogotá, which is expressed as: 
 

5. The parameters of the differential equation model, including control variables, are: 

 
6. The observation system should be defined based on the information reported in the databases 

that follow the epidemic (if more than one database exists, it is possible to consider the two 
sources of information). Since there is no universal data model for reporting epidemic 

observation, each case should be analyzed separately. Below is the information reported by the 

mayor of Bogotá. 
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The KF hypotheses for pandemic observation (surveillance) are discussed below. KF assumes that: 
 

1. The control variables are known and deterministic. These limitation may be managed adjusting 

the modeling, considering de control variables as new state variables. 
 

2. The dynamic equations are known. These is a big limitation because one of the problems of the 
epidemic modeling is that the true equation is unknown.  

 

3. The parameters of the dynamic equations are known and deterministic. This is another big 
limitation for the case of an epidemic process. 

 
4. Co-variance arrays, Q(t) and R(t) ,related to model errors are deterministic, which is not actually 

true, as the true value and variation dynamics of the array elements are unknown. 
 

KF variations and improvements, that are alternative to addressing the limitations and issues that 

have been referenced, will be discussed below. 
 

7. DYNAMIC SYSTEM IDENTIFICATION  
 

The main idea of KF is oriented to estimate a set of physical variables that summarize the state in 

which the system is located. To determine the evolution of the system is available:  
i) Control Variables (the decision-maker actions) and  

ii) Dynamic Equations (discrete or continuous) for determining the expected path system. 
 

With respect to the dynamic equations, two cases must be considered: 
i) They are known with certainty, or 

ii) They must be identified during the process of learning about the knowledge (dynamics) of the 

system.  
 

Two uncertain cases should be considered in: (i) the parameters of the equations, and (ii) the 
structure of the equations representing the dynamics of the system. This section is concentrating on 

the latter case, this means using the KF to estimate the parameters of an algebraic statistic model.  

 
In the specific case of pandemic modeling, this has to do with the following parameters: 

 
Simultaneous estimation of state variables and statistical parameters seeks to solve the problem of 

sub-optimization that is generated when the problem is faced in isolation, either by estimating the 

value of the variables assuming the parameters of the models as deterministic, or when the statistical 
parameters are estimated assuming the variables, physical or technical-economic, as deterministic. 

 
The study of the selection of differential equations governing system behavior faces the section called 

Bayesian Selection of Dynamic Equations 
 

7.1. PARAMETER ESTIMATION OF STATISTICAL MODEL 

 
Then, should be noted that, paradoxically, for the estimation of the parameters of a model it is 

necessary to look at them as state variables and associate them with estimates that have the model 
parameters at any given time. 

 

A first approximation is to assume that at the initial moment (t=0) the response of the system 
function parameters has been identified and estimated exogenously, it is considering the statistical 
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model as deterministic components, it is strong enough since the parameters come from models in 

which have been considered as random variables. This initial estimate may correspond to a model 
probabilistic of the system under study. 

 

Considering that the time t=0 is only for reference, it is expected that the parameters of a 
probabilistic response function continue to be random variables after the initial moment, and 

therefore should continue considering that in accordance with the receipt of new information in new 
periods t>0. 

 

Then, it discusses the use of the approach for the estimation for the identification of models of 
systems (technical, physical, economic, social,...) that include the estimation of model parameter. 

For purposes of this analysis the endogenous and exogenous variables will be considered as 
deterministic, these variables refer to the sample of variables included in a statistical modeling. 

 
This approach allows to assume dynamic structures for the variation of the parameters, which leads 

to more flexible models that the obtained making use of limited tools that offer classical statistics-

based methods. It must be also understood that state estimation process corresponds to a Bayesian 
Inference process the estimators are recalculated when new information arrived. 

 
From this point of view, the identification of behavior a system is not limited to evaluate parameters 

that summarize the average behavior of the system as a result of integrating its variability on a last 

period, and from there to consider the calibrated model as static model; the real problem is the 
determination of the estimators of the parameters representing 'best' dynamics of the system in 

accordance with the observed data for the instant of current, time t. It implies concentrating the 
effort in the assessment of the changes that are occurring, then is possible to determine in 'real time' 

structural system changes that are reflected in changes in the values of the parameters, which in 
classical models only occurs after these changes have occurred. 

 

The advantages of the approach for the state estimation versus the classical methods are presented 
below: 

1. The biggest advantage of this scheme lies in the possibility of assuming hypotheses about the 
dynamics of variation of parameters. From this point of view the following aspects must be 

considered: 

▪ The estimators of the parameters of a system response function dependent on the 
observations (random variables) and should therefore be subject to adjustment in accordance 

with the information obtained. 
▪ A system parameters vary over time, since many of them are affected by changes that occur 

in a system as a result its development and/or its natural evolution. 

▪ From the point of view of monitoring system is suitable to use parameter values that conform 
to the present circumstances, instead of values that integrate knowledge of their behavior in 

the past. 
▪ Many of the changes that occur in the behavior of a system are consequences of unexpected 

events; before these eventualities schemes based on multiple states, or similar, to determine 
the moments in which structural changes occur, differentiating them from pure stochastic 

effects. 

 
2. The integration of Bayesian estimation processes allows to discriminate, or to integrate, different 

structures of models, selecting one that better fits to observations at any given time. 
 

3. One of the limitations in many systems is the frequency in the data acquisition. In many cases 

the data are obtained with frequencies lower than those required for monitoring the system (e.g., 
weekly, monthly, annual). From the observed information, state estimation modeling allows 
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estimates of all the variables of the system, including which have not been measured at that 

time. 
 

4. Regarding statistical hypotheses, classical prediction models assume that the variables, 

endogenous and exogenous, are deterministic, considering that it is not possible to correct the 
past data in accordance with the processed of new observations. 

 
5. The state estimation allows predictions afterwards (smoothing) such that in the case of backward 

values of the variables the data used are not the measured initially; the values obtained as a 

result of the data processing, that correct systematic errors that occur as a result of erroneous 
or little representative measurements. 

 
6. Classical methods accumulated the errors of measurement and modeling in only one error of the 

model, which leads to confuse the origin for the noises of the system. 
 

7. From the point of view of control, the state estimation allows the online analysis of the 

phenomena that are occurring, while conventional methods are aimed at "ex-post" analysis to 
describe phenomena already past. 

 
There are at least two alternatives to address the problem, the first is the use of the Extended Kalman 

Filter (EKF), which is based on the fact that the above equation involves a non-linear relationship 

between variables/signals and parameters, which are the random elements involved in the problem.  
 

The second alternative is based on multiple chained linear filters, commonly known as Dual Kalman 
Filter (D-KF). Typically, two filters are used that act in parallel, one on the variables/signals and one 

on the parameters.  
 

7.2. TIME INVARIANT PARAMETERS  

 
This case is related to the hypothesis that the parameters of the differential equations are permanent 

over time. Under this hypothesis the estimators of the parameters that would be obtained when t 
tends to infinity tend to an asymptotic value, the true value of the parameter. As this value is reached, 

the filter on the parameters no longer provides value. 

 
7.2.1. UNIVARIATE MODEL 

 
Consider a model with only a dependent variable: 

 

Z(t) = TW(t) + (t) 

 
where  

Z(t) dependent variable in time t; for example, the flow of a river 
W(t) vector of independent time variables t; for example, flows upstream, rain, wind, 

 vector of parameters of the model, 

(t) the error of the model in time t. 

 

A model for the estate estimation may be formulate using the following definitions: 
 

1. State equation: 

(t+1) = (t) =  

 
2. Measurement equation: 
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Z(t) = WT(t) (t) + (t)  

 

Estimates of  at time t correspond to the estimates of the state variables (t/tp) when available 

information has been processed until the tp. To apply KF it is necessary to have estimates of the 
initial state 

 

(0/0) = 0 

(0/0) = 0 

 
and the variance of the measurement error 

 
R(t) = s2 

 
The previous model, equivalent to a classical model, has the following implications: 

 

1. It has been implicitly assumed that (t), the error in modeling of the system dynamics, is equal 

to zero and its variance-covariance matrix, Q(t), is equal to zero. This hypothesis assumes that 
the model is perfect, in this case that it is linear, and the parameters are constant and invariant 

over time. In statistical terms, this implies that when t tends to infinity the estimators of variance-

covariance matrix tend to zero, converging to a constant vector independent of the value of t, it 
implies that as time elapses the new information does not provide any additional knowledge 

about the system. This model has not a learning process. 
 

2. KF assumes that is called the variance of the error in the measurement s2; this variance is 
associated to the precision of the measurement system and it should be known, since the 

measuring system is known. By not considering the modeling error, the error in measuring 

integrates the model errors and errors of measurement system, becoming a parameter that must 
be estimated. There are several alternatives for dealing with this problem: 

▪ Considering distributions Gaussians to all the stochastic component of the model, it is possible 
to work based on Bayesian regression models which extends the estimation process to s2, 

this solution is the more formal from the statistician point of view, 

▪ The state vector can be extended to include s2. This solution is consistent with the fact that 
the model state variables represent the parameters of the system, 

▪ Another alternative is the use of a combination of Bayesian models, assuming each one of 
them different values for s2, and subsequently determine a posteriori probability of each 

model being the true [8]. Experimental studies [4] [8] have shown that asymptotically 

estimators (t/t) and (t/t) are independent of the information a priori. 

 
7.2.2. MULTIVARIATE MODEL 

 
Consider a multivariate model 

 

Z(t) = TW(t) + (t) 

 
where  

Z(t) vector of dependent variables in the time t, 
W(t) vector of independent variables in the time t t, 

  array of parameters of the model, with vectors rows i, 

(t) vector of model errors in the time t. 

 

The following model may be formulated in terms of state estimation 
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1. State equation: 

i(t+1) = i(t) = i 

 
2. Measurement equation: 

 

Zi(t) = WT(t)i(t) + i(t)  

 

The previous formulation represents a linear system in which the state variables are grouped in an 

array, with vectors i(t), and observations in an observations matrix with Zi(t) components. Filter 

expressions can be derived from a multivariate Bayesian regression scheme [9]. 
 

7.3. TIME-VARIANT PARAMETERS  
 

Classical statistical models have limitations in the modeling of systems involving time-variants 

parameters. This limitation is resolved traditionally assuming preset forms of variation (for example, 
models associated with the months of the year, or the seasons,...). State estimation modeling allows 

to consider systems with time-variants parameters. Temporal variation may occur for reasons purely 
stochastic, or constant changes in the structure of the system for a period. Consider the univariate 

model: 
 

Z(t) = (t)TW(t) + (t) 

 

assuming the vector of time-variant parameters (t)  

 
With respect to the previous modeling, parameter invariance hypothesis is directly related to the 

elimination of (t), the term corresponding to the noise in the state equation. If it is assumed that 

Q(t) variance-covariance matrix is zero, variations in the parameters due to stochastic reasons will 

be allowed. In this case, the (t/t) variance-covariance matrix estimator does not converge 

asymptotically to zero. 
 

An alternative modeling can be done by allowing trend variations in the parameters. We define the 

dynamics of parameters based on the following equation: 
 

(t+1) = (t) + (t) 

 

where (t) represents the change in the value of the parameter at time t, this is: 

 

(t) = tb(t) 

 
In this case the state estimation model can be defined as 

 
1. State equation: 

(t+1) = (t) + (t) + (t) 

(t+1) =  (t) + (t) 

 

2. Measurement equation: 
 

Z(t) = H(t)T(t) + (t) 

 

having to make estimates for (t) and (t). If the system is structurally stable must be met that 
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t(t) = 0 

 

Alternatively, if the system is in the process of setting the trend of change, estimated based to (t), 

which will be different from zero until to return to the equilibrium (a steady state). 

 
7.4. DUAL KALMAN FILTER  

 
Dual Kalman Filter (DKF) uses two filters that act in parallel, one on state variables and one on 

parameters of the statistical model, or on the physical model. Based on this approach there are 

multiple theoretical variations, here will be considered the one presented by Labarre et al. (2006). 
The diagram summarizes the process. 

 

                
                  

STATE ESTIMATION
MODEL PARAMETERS

Parameters         
         

                                   

OBSERVATION 

 
7.4.1. FRAMEWORK 
 

For the presentation of this theory, the VAR(p) model that is represented in a vector way as a 

reference will be used as a reference 
 

Yt = i=1,p  i Yt-i + t  

 

where p represents the number of lags, Yt the vector of endogenous variables, q the matrix of 

coefficients and t the vector of innovations, which can be contemporary correlated with each other 

but which is not correlated with its own laggards nor is it correlated with endogenous variables. 

 
7.4.2. MATHEMATICAL FORMULATION 

 

For the formulation of mathematical theory let us consider that the equation of the VAR(p) model 
can be represented by the following expression  

 

X(t) = A(t) X(t-1) + t  

 

where the vector X(t) represents the state variables and has the following structure  

 
X(t) = { Yt-1 ,  Yt-2 , … , Yt-p } 

or 
X(t) = { y1,t-1 , y2,t-1 , … , yr,t-1 , y1,t-1 , y2,t-1 , … , yr,t-2 ,  ... , y1,t-p , y2,t-p , … , yr,t-p } 
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where yi,t represents the value of the endogenous variable i in the t-period; r being the number of 
endogenous variables in the system. Matrix A(t) is composed of two submatrices  

 

A(t) =  
(t) 

 

 

where the submatrix (t) has the following structure  

 

(t)T = { 1(t)T, 2(t)T, … , r(t)T } 

 

being i(t) the vector of parameters associated with the endogenous variable i. The  submatrix 

corresponds to a deterministic matrix that allows the lagging values of endogenous variables to be 

shifted backwards, the structure of which can be divided into p-1 horizontal blocks and p vertical 
blocks, each associated with a square matrix of dimension r. 

 

For the case of p equal to 4,  is defined as follows  

 
 I 0 0 0 

 =  0 I 0 0 

 0 0 I 0 

 

where I represents the identity matrix and 0 an array of zeros, each of dimension r. 
 

The equation  

X(t) = A(t) X(t-1) + t  

 
has the characteristic of corresponding to the filter state equation over variables/signals and having 

embedded the filter observation equation over the parameters, which is equal to  
 

Y(t) = (t) Y(t-1) + t  

 

An expression that can also be written as 
 

Yt = I  Y(t-1)T vec((t)) + t = X(t-1)T  + t 

 
In terms of the vector of state variables, X(t), it can be written as  

 

Y(t) = G(t) X(t-1) + t  

 
where the matrix G(t) is defined as 

 

G(t) =  (t) 0 0 0 

 
where Y(t) represents the observation vector, G(t) the measurement matrix of the state variables 

and t the noise vector in that measurement. 

 
It would be necessary to include the dynamic equation on the parameters, which for purposes of this 

presentation is assumed equal to  

 

(t) = (t-1) + t 
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where (t) represents the array of estimated parameters for the period t and t to the error/noise 

matrix in that equation. 

 
To follow the KF format the above expression can be presented as: 

 

vec((t)) = I vec((t-1)) + I vec(t) 

 

With the above elements you can formulate the dual-filter based on the equations presented in the 

following table. 
 

DUAL KALMAN FILTER 

EQUATION PHYSICAL VARIABLES FILTER  STATISTICS PARAMETERS FILTER 

Dynamic 
State 

X(t) = A(t) X(t-1) + t 

 

X(t) = { Yt-1 ,  Yt-2 , … , Yt-p } 

 

A(t) = 
(t) 

 
 

(t) = (t-1) + t 

= 

vec((t)) = I vec((t-1)) + I 

vec(t) 

Observation 

Y(t) = G(t) X(t-1) + t 

 

G(t) 
= 

(t) 0 0 0 
 

X(t) = A(t) X(t-1) + t 

 

X(t) = { Yt-1 ,  Yt-2 , … , Yt-p } 

 

A(t) = 
(t) 

 
 

 
As you can see the filter status equation on the physical variables (flow, precipitation, epidemic states, 

... ) corresponds to the filter observation equation on statistical parameters and becomes the central 
axis of Dual Filter variables-parameters, whose central idea is to formulate two filters and exchange 

the common information between them, in this way a more coherent estimate is achieved than that 
of using a single filter or two independent filters. The next figure shows the idea. 

 

PHYSICAL FILTER 

X(t) = A(t) X(t-1) + t

X(t) = { Yt-1 ,  Yt-2 , … , Yt-p }
A(t)T = [ (t)T T ]

Y(t) = G(t) X(t-1) + t

G(t) =[ (t)  0  0  0 ]

                  

(t)   (t  )   t

X(t)    (t) X(t  )   t
X(t)      t   ,   t   , … ,  t    

                  

(k-1/k-1)

PHYSICAL FILTER 

X(t) = A(t) X(t-1) + t

X(t) = { Yt-1 ,  Yt-2 , … , Yt-p }
A(t)T = [ (t)T T ]

Y(t) = G(t) X(t-1) + t

G(t) =[ (t)  0  0  0 ]

X(t   t  )

                  

(t)   (t  )   t

X(t)    (t) X(t  )   t
X(t)      t   ,   t   , … ,  t    

                  

y(t-1) y(t)

DUAL STATE KALMAN FILTER PROCESS

 
 

The following graph presents how the DKF process is integrated into the continuous optimization of 
a dynamic system under uncertainty. 
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7.5. EXTENDED KALMAN FILTER 
 

In the Extended Kalman Filter (EKF), the state transition and observation models does not need be 

linear functions of the state but may instead be nonlinear functions. These functions are of 
differentiable type. 

  
To solve the problem of non-linearity in the status equation, the Extended Kalman Filter (EKF) 

proposal is based on performing a first-order Taylor approximation at each point at which the state 

estimation process must be performed. 
  

For example, in parameter estimation the dynamic equation involves a non-linear relationship 
between the state variables, X(t-1), and the parameters, A(t), which are the random elements 

involved in the problem. 

  

X(t) = A(t)  X(t-1) + mX
t 

 

A(t) = A(t-1) + mA
t 

  

Taylor's first-order approach to the vector function f(x) is: 

  

F(x)  F(x*) + F(x*)T(X* - X) 

  

Based on the above definition, X(t) can be approximated as: 
  

X(t) = X(t-1) + [A(t)  X(t-1)] (X(t-1) - X(t)) + mX
t 

 

A(t) = A(t-1) + mA
t 

 

8. BAYESIAN SELECTION OF DYNAMIC EQUATIONS 
 

Since there is no "true" model of a physical system, or a technical, an alternative to improve the 

predictions is to use combination of several models that may potentially represent such a system. In 
this respect the experience of Alan Blinder (Former Federal Reserve Vice Chairman, 1998) may be 

illustrative: 
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1. "My way to approach this problem while I was in the Fed was relatively simple: use a wide variety 

of models and ever over-rely on one of them". 
2. When the Fed experts explored the consequences of various measures, I always insisted on 

seeing the results of: 

i) Our own quarterly econometric model, 
ii) Some other econometric models 

iii) A variety of Vector Autoregressive (VAR) that I developed for this purpose. 
  

The empirical evidence is consistent with the arguments of Blinder that encourage the use of different 

methodologies/technologies with the aim of improving the performance of the forecasts. Therefore, 
we can expect a minor error of forecast using a combination of techniques obtained through a process 

of searching for the optimal weights of each of the models. The simplest position is to use the 
average; however, there are other possibilities, as the combination of Bayesian models which has 

been applied in many cases. 
 

Then, Bayes' theory has been widely used for when it is unknown what is the true model that 

represents the dynamics of a system. Two cases can be considered:  
▪ Discrimination of a model as the correct model  

▪ Determination of the state in which a system is located that is characterized by the response 
function (system dynamics) that can change over time. 

 

8.1. BAYESIAN ENSEMBLE OF KALMAN MODELS  
 

8.1.1. MATHEMATICAL FORMULATION 
 

Below, is the extension of the Kalman filter theory in order to compare simultaneously several models 
of a system. The theoretical development that follows specify a model Mi based on the set of 

parameters  

 

Mi= {Ai(t), Bi(t), Li(t), Hi(t), Qi(t), Ri(t), xi(0/0), i(0/0)} 

 

the subscript i indicates the model to which the parameter is associated. 

 

Consider i(t/tp) as a set of estimates of the first moments for the distribution of probability of the 

state vector at time t when the information available up to the time tp is processed  

 

i(t/tp) = { Xi(t/tp), i(t/tp) } 

 

i(t) is the probability a posteriori that the model i is true when all the information has been processed 

up to time t 

 

i(t) = Probability[model(t) = i | I(t)]  

 

Based on the Bayes theorem the value i(t) is defined as: 

 

i(t) =  

C x Probability[Z(t) | model(t-1) = i, I(t-1)]   Probability[model(t-1) = i | I(t-1)] 

 

where model(t) represents the estimator of the true model in time t. The previous expression is 

equal to  
 

i(t) = C x Li[Z(t) | xi(t/t-1), i(t/t-1)]   i(t-1) 
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where Li[.] corresponds to the likelihood function of Z(t) conditioned in the estimators xi(t/t-1) 

and i(t/t-1) is defined as 

 

Li[.] = {2 |Vi(t/t-1)|}-m/2  

Exp [i(t/t-1)TVi(t/t-1)-1i(t/t-1)] 

 

where 


i
(t/t-1) = Z(t) – H(t) Xi(t/t-1) 

Vi(t/t-1) = Hi(t)Ti(t/t-1)Hi(t) + Ri(t) 

 
and the constant C is a normalization constant equal to 

 

C = 1. / {i Li[.] i(t-1)} 

 

This process is conditioned in a priori probability for each model, i(0) and allows: 

▪ Select a model from a set of probable models, taking as true those who have most a posteriori 

probability; or 
▪ Generate a merged model based on the weighting of models according to their a posteriori 

probability, in this case the estimate of the state of the system is formulated as 
 

x(t/tp) = i i(t) xi(t/tp) 

 

8.1.2. CASE:  PROJECTION OF THE ENSO (EL NIÑO) PHENOMENON 
 

The prediction of the ENSO (El Niño Southern Oscillation) phenomenon by the International 
Research Institute for Climate and Society of Columbia University (IRI, http://iri.columbia.edu) uses 

two types of models for the prediction of ENSO: 

1. Dynamic: based on the physical explanation of the dynamics of the process; and  
2. Statistics: based on empirical evidence of the process adjusted through statistical models. 

 

 
 
IRI publishes results of two methodologies for projections of models combining: 

 

1. Subjective based on a consensus among analysts of the CPC (Climate Prediction Center) and 
IRI. 

http://iri.columbia.edu/


EPIDEMIC STATE AND PARAMETER ESTIMATION USING DYNAMIC MACHINE 
LEARNING BASED ON  A DUAL MULTI-STATE KALMAN FILTER (DMS-KF) 

 

 

 

37 

 

 

2. Objective based on a mathematical model that determines the weighting factors of each of 
the models available based on the results obtained in the last periods based on a combination 

Bayesian model. 

 

 
 
The benefits of this approach are: 

1. Discrimination of a model such as the “real” model (the most probable ?) 
2. Composition of a general model based on the weighting of different models (using its probability 

to be the true model). This dynamic selection of the structure of the model implies a learning 

process. 
 

 
 

 

8.2. MULTI-STATE KALMAN FILTER (MS-KF) 
 

The Kalman filter theory can be extended to consider the modeling of systems whose dynamic 

representation depends on the state, or regime, in which the system is.  
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Multiple-State Kalman Filter (MS-KF, Velasquez, 1978) corresponds to the extension of the theory 

of the Kalman Filter to model systems whose dynamic representation depends on the state, or regime, 
in which the system is. Example of a system status can be: 

▪ A person: good temper, temper, quiet. 

▪ In a watershed: dry, wet, in transition  
▪ In a client: happy, unhappy,... 

▪ Epidemic State Estimation: stable, changing 
 

There are plenty of examples that can be cited. In all of them the response of the system (person, 

basin, client, epidemic state, ...) can respond to stimuli in the environment in accordance with the 
state in which the system is located, which in many cases is not fully identified, because is a random 

variable. 
 

The propose way is to chain the Markovian and the Bayesian modeling. It can be considered the 
states Si of a Markov process as the random variables of Bayesian inference process that produces 

estimators of the probability of the transition probability between the state i and state j of the system 

Markov process. 
  

The following section, which corresponds to an example of modeling with multiple States (KF-MS), 
discusses in more detail the problem of changes in the parameters of the system response function. 

 

8.2.1. MATHEMATICAL FORMULATION 
 

Therefore, the concept of states may be associated with a semi-Markov process (time-dependent 
transition matrices) where the probability of transition from one state to another, at any interval of 

length t, which is not stationary and can be changed to the extent that develops the process over 

time. 

 
In this case the regime in which the system is located should be considered as a variable of additional 

state which must be estimated "in line"; the state may be associate to a state of a Markov chain. 
 

1
1(t)

i
i(t)

N
N(t)

1
1(t+t)

j
j(t+t)

N
N(t+t)

1,1(t)

N,N(t)

i,j(t)

PROBABILITY
STATE TRANSITION 

j(t)

PROBABILITY A PRIORI
SYSTEM STATE

j(t+t)

PROBABILITY A POSTERIORI
SYSTEM STATE

t t + t
 

 

States are identified by the subscripts i and j. The set of parameters associated with each state i, 

which can be identified using the Kalman filter. 
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Kalman filter must be changed to calculate the probability a posteriori that the system is in a state j 
considering all the transitions that may have occurred from any state i to state j during the period t. 

Each State j is characterized by the following set of parameters 

 

j(t) = { j(t), Aj(t), Bj(t), Lj(t), Hj(t),Qj(t), Rj(t) } 

 

where j(t) represents the probability a priori that the system is in state j at time t, which complies 

with the following dynamic equation 

 

j(t) = j(t-1) 

 

where j(t) is the probability a posteriori that the system is in state j in time t. 

 
Consider the probability that between t-1 and t is made a transition from state i to state j defined 

as 

 

i,j(t) = Probability[state(t) = j, state(t-1) = i | I(t)] 

 

Based on the Bayes theorem the value of i,j(t) is defined as 

 

 i,j(t) = C  x  Probability[Z(t) | state(t)=j, state(t-1)=i, I(t-1)]  

x  Probability[state(t)=j | state(t-1)=i, I(t-1) ]  x  Probability[state(t-1)=i | I(t-1) ] 

 
that is equal to 

 

i,j(t) = C  x  L[Z(t) | state(t)=j, state(t-1)=i, I(t-1)]  x  j(t)  x  
i
(t) 

 

 
where L[.] represents the likelihood function of Z(t) conditioned in make the transition from i to j, 

and the information processed up to time t-1. C is the normalization constant. 
 

To express the previous formula in terms of the estimators of the variance-covariance matrix and 

state variables is necessary to define estimators i,j(t/t) in accordance with 

 

i,j(t/t) = {xi,j(t/t),i,j(t/t)}] 

 = BAYES [i(t/t-1), Z(t), U(t), Qj(t), Rj(t)] 

 

Based on the above estimates L [.] is defined as 
 

L[.] = {2 |Vi,j(t/t-1)|}-m/2 

 Exp [i(t/t-1)TVi,j(t/t-1)-1i(t/t-1)] 

where 


i
(t/t-1) = Z(t) - H(t)xi(t/t-1) 

Vi,j(t/t-1) = Hi(t)Ti(t/t-1)Hi(t) + Rj(t) 

 
The estimates a priori are defined as 

 
xj(t/t-1) = Aj(t-1)xj(t-1/t-1) + Bj(t-1)U(t-1) 

j(t/t-1) = Aj(t-1)j(t-1/t-1)Aj
T(t-1)  

+ Lj(t-1)Qj(t-1)Lj(t-1) 
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The information a posteriori may condense through the following process 
 

j(t) = i=1,N i,j(t) 

xj(t/t) = i=1,N i,j(t) xi,j(t/t) 

j(t/t) = i=1,N i,j(t) i,j(t/t) 

 

determining a posteriori estimator based on integration on all possible transitions to a state j starting 
from N possible states. 

 

The prediction of the regime/state of the system can be based on the weighting of all possible 
systems, or by selecting one who is more likely. 

 
8.2.2. CASE:  STREAMFLOW FORECAST 

 

8.2.2.1. NWSRFS (U.S. NATIONAL WEATHER SERVICE RIVER FORECASTING SYSTEM) 
 

Rainfall-runoff models are supported in conceptualizations of the hydrological system that simulate 
the physical process that occurs in the basin and that converts precipitation into flow at the outlet of 

the basin. Among the most well-known models can be mentioned the NWSRFS (U.S. National 
Weather Service River Forecasting System) 

 

The high cost of implementing such models, which require a large amount of physical type data, is 
one of its main features. These models divide the basin into sub-basins of homogeneous 

characteristics and on them are imposed equations of water propagation. 
 

The process of implementing the models involves a process of calibration of the physical parameters 

that characterize the sub-basins, which is usually done from a historical sample of precipitation and 
flow series with high precision, i.e. time level, or lower, for small and daily level basins for large 

basins. 
 

The research questions faced were:  

1. How can we provide improved estimations of basin initial conditions (e.g., soil moisture, snow-
pack) at the start of a forecast period; and  

2. How do we characterize hydrologic model uncertainties.  
The first question is considered under the topic of Data Assimilation, and the second question is 

addressed through the Multi-model Super-ensemble techniques in hydrology. 
 

1. Data Assimilation.  

NWSRFS  has implemented the Ensemble Kalman Filter (EnsKF) in the SNOW-17 model. Snow 
data assimilation using the Extended Kalman Filter (EKF) is an elegant solution to the challenges 

posed by the EKF. 
 

2. Multi-Model Super-Ensemble 

NWSRFS multi-model super-ensemble technique mixes and matches various methods for 
modeling hydrologic processes to allow the construction of multiple models, all with different 

structure. We are using the USGS Modular Modeling System (http://wwwbrr.cr.usgs.gov/mms/) 
as an integrating framework. For any given model automated parameter estimation methodology 

(e.g., MOCOM-UA) will be used to determine parameter sets. The potential benefits of this 
approach are: 

▪ The super-ensemble provides probabilistic information content. 

▪ The spread of the super-ensemble provides an estimate of forecast uncertainty. 

http://wwwbrr.cr.usgs.gov/mms/
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▪ The approach allows automated configuration of hydrological models over multiple river 

basins with minimal human effort. 
▪ The multi-model system reduces the commitment of operational agencies to their own model, 

and thus may allow more rapid transfer of new ideas from the research community to the 

operational setting. 
 

8.2.2.2. CASE:  MS-KF APPLIED IN WATER RESOURCES SYSTEM   
 

The response of a system function is the reflection of the form of functioning of its internal structure. 

Structural changes produce changes in the response function. One of the main limitations in the 
modeling of dynamic systems is related to the hypothesis that the response function is known a priori, 

not being able to easily model structural changes in the system. Examples of structural changes due 
to events: i) natural (tsunamis, earthquakes,...), ii) cyclic processes (climatic, changes from summer 

to winter passing through intermediate stations), iii) economic (economic crises,...), … 
 

In order to model structural changes, the following hypothesis is formulated:  

i) A system can be in one of multiple states, or regimes. 

ii) Characterized each state by the error variance-covariance matrices Q(t), Q(t) y R(t).  

 

Consider the case of three States:  
▪ Steady  

▪ Structural Transient  

▪ Stochastic Transient 
  

In steady state parameters that define the dynamics of the system do not vary, this is 
 

t(t) = 0 

 

In structural transient state, the dynamics of the system is changing translating the impact into 
changes in parameters 

 

t(t)  0 

 

In the stochastic transient state, the system is affected by shocks due to its intrinsic probabilistic 
nature, that are not always explained by the dynamics of the system, and they are not due to 

structural changes, reflecting its effect on measurement errors. 
 

Then the system must be in one of three states, the state in which the system is located must be 

estimated, since it cannot be identified a priori. A real case are the effects of global warming which 
is changing the shape of the behavior of water systems in unexpected ways; for example, if the 

system is represented by models which behavior is associated with the months of the year, being the 
months associated with climate change; the impact of arrears and the overtaking of the seasons 

(winter, spring, summer, autumn) may not be associated with months of the year; then an stationary 
model, 12/52 models for the year, cannot properly manage this new process. 

 

Models based on classical methods can not react ("learning") to structural changes since they do not 
have a clear sign of the changes that are occurring, and no distinction between structural changes 

of purely stochastic effects. . The consequence of this fact is that models react slowly during periods 
of structural change and can be interpreted as indication of structural change effects of random 

origin. 

 
A MS-KF model with time-variants parameters may be governed by the following equations 
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1. State equation: 

(t+1) = (t) + (t) + (t) 

(t+1) = (t) + (t) 

 
2. Measurement equation: 

 

Z(t) = H(t)T(t) + (t) 

 

 

Then, it is possible to characterize the states based on the different terms of error variance-covariance 
matrices; this based on the response of a system function is the reflection of the form of functioning 

of its internal structure, the structural changes produce changes in the response function. 
 

The proposed characterization has in mind that the entropy of a dynamic system is not independent 

of the state in which it is located, and that it cannot be characterized by values of the state variables, 
since such entropy can be generated exogenously, and reflected in the matrices of variance-

covariance change that depend on the state in which the system is located. The following table shows 
qualitative characteristics of these matrices 

 

State 
Type of Noise 

Q(t) Q(t) R(t) 

Steady  Normal Normal Normal 

Structural Transient  Normal Large Normal 

Stochastic Transient Normal Normal Large 

 

This case can be considered as a particular case MS-KF. 
 

In 1978, Velasquez [7] implemented a MS-KF for the prediction of flows in the basin of the Caroni 
River in Venezuela. The objective was to predict the river-flow at different points of the basin of the 

Caroni River which flows into the reservoir of Guri, which feeds a system of hydro-generating more 
than 10,000 MW of nominal installed capacity. Given the size of the reservoir, and the low-altitude 

barrage, 162 meters, slight variations in the height of the water in the reservoir, generates large 

variations in the curve of hydro-generation. 
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AREKUNA

LA PARAGUA SAN PEDRO

 
 

Then presents the results of a prediction model with anticipation of a day, for two sites in the basin: 
i) San Pedro, punto donde se unen el río Caroní con el río Paragua (98.000 kmts2), y  

ii) Arekuna, una estación de medición de caudal ubicada sobre el río Caroní aguas arriba de San 
Pedro (46.000 kmts2). 

 

The statistical models have the following structure: 
 

▪ San Pedro Model (SP):  
 

QSP(t) = SP(t) + j=1,2 q=1,TVI(j)  j,q(t)  Qj(t-q) + (t) 
 

where Qj(t) represents the average flow on the site j {Arekuna, La Paragua} during the 

period t, j,q(t) the parameter estimated period t for the fraction of flow reaching San Pedro q 

days after having gone through the site j and j(t) flow base expected to day t in site j.  

 
▪ Arekuna Model (AR):  

 

QAR(t) = AR(t) + j=1,2 q=1,TVI(j)  j,q(t)  Pj(t-q) + (t) 

 

where i,q(t) represents the parameter estimated during the period t for the fraction of rain, 

Pj(t-q), reaching Arekuna q days after having fallen in the area associated with the site j, 

{Arekuna, Wonken, Kanavaten, Uriman}. 
 

State estimation modeling using the state equation and the observation equations presented 
previously. 

 

The following table presents the summary of the results when they are evaluated based on the 
statistics defined by the World Meteorological Organization, WMO. K-I corresponds to a standard 

KF and K-V to a MS-KF. As remarkable result can be verified as MS-KF still more adjusted flow 
signal for the extreme flows and the average, which shows improvement in the results due to the 

process of learning that goes by adjusting the response function and the state of the system of 

considering the reception of the data. 
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APLICACIÓN PREDICCIÓN CAUDAL RIO CARONÍ

WW..MM..OO..  SSTTAATTIISSTTIICCAALL  

MMooddeell                            

  DDAAIILLYY  SSTTRREEAAMMFFLLOOWW  
MMOONNTTHHLLYY    

MMAAXXIIMMUUMM  FFLLOOWW  RRAATTEE    
MMOONNTTHHLLYY    

MMIINNIIMMUUMM  FFLLOOWW  RRAATTEE  
VVOOLLUUMMEE  

  mmccss  AA  RR  CC  mmccss  AA  RR  CC  mmccss  AA  RR  CC  MMMM33  CC  

SSaann  PPeeddrroo                            

RREEAALL  44990055        77111155        11119988        1122444400    

KK--II  44885511  ..003322  ..001100  ..005500  77111100  ..004400  ..000000  ..005566  11220066  ..002244  ..000099  ..003333  1122661133  ..001199  

AArreekkuunnaa                            

RREEAALL  22449944        44113388        779988        66442255    

KK--VV  22449977  ..113311  ..000011  ..117744  33991177  ..004444  ..003333  ..112222  774466  ..220099  ..000011  ..229966  66442288  ..001155  

KK--II  22553377  ..115544  ..001177  ..119933  33554455  ..113399  ..113311  ..118822  11225511  ..550077  ..556677  ..558899  66550022  ..114433  

KK--II  KKAALLMMAANN  IINNVVAARRIIAANNTT  

KK--VV  KKAALLMMAANN  VVAARRIIAANNTT  MMUULLTTIIPPLLEESS  SSTTAATTEESS  

  

CC  ==  [[    ((YYcc  --  YYoo))  22//nn))11//22  //  YYmm  

RR  ==  [[    ((YYcc  --  YYoo))  //nnYYmm  

AA  ==  [[    YYcc  --  YYoo    //nnYYmm  

  

YYcc    CCaallccuullaatteedd  SSttrreeaammffllooww  

  

YYoo  OObbsseerrvveedd  SSttrreeaammffllooww  

  

YYmm  MMeeaann  SSttrreeaammffllooww  ((YYmm  ==    YYcc//nn  ))  

  

  
 

 
9. EPIDEMIC STATE AND PARAMETER ESTIMATION  

 
This section presents the proposed formulation for the SEIMR/R-S model. for implementation using 

Kalman's filter theory and the variations and improvements introduced that have been presented in 
this document.    

 

From the point of view of managing a pandemic, the mathematical problems to be faced: 
i) To define the structure of the models of differential equations that govern the behavior of the 

pandemic 
ii) To estimate the parameters that define a specific model within the "infinity" of possible models 

to describe the dynamic process. 

iii) To know the true state of the pandemic, which is defined by the number of people, or by the 
fraction of the population, which is in each epidemiological state. 

 
9.1. DIFFERENTIAL EQUATIONS  

 
The differential equations of the SEIMR/R-S (regional-segmented epidemic) model are: 

 

Srg,ss(t)/t = - S2Irg,ss(t) - N  Srg,ss(t) + S
rg,ss  NPX(t) 

 

Erg,ss(t)/t = S2Irg,ss(t) -   Erg,ss(t) + E
rg,ss  NPX(t) 

st=I0 

Ist,rg,ss(t)/t =   Erg,ss(t) - st,ss   Ist-1,rg,ss(t) + I
rg,ss  NPX(t)   

stI1F 

Ist,rg,ss(t)/t = zst-1,ss   Ist-1,rg,ss(t) - st,ss   Ist,rg,ss(t)  

 

Rrg,ss(t)/t = stI1F st-1,ss  Ist,rg,ss(t) - N  Rrg,ss(t) + ssSSR(rg) R
rg,ss

  NPX(t) 

 

Drg,ss (t)/t = stI1F ss  Ist,rg,ss(t)  

 

NRrg(t)/t = N  SRrg,ss(t) + N  RRrg(t)  
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where the following rates are defined for the socio-demographic segments  

 
SOCIO-DEMOGRAPHIC BIOLOGICAL PARAMETERS 

Parameter Equation Description 

st,ss agAGS(ss) ag,st Total exit rate 

zst,ss agAGS(ss) ag,st Worsening exit rate 

st,ss agAGS(ss) st,ag Recovering exit rate 

ss agAGS(ss) ag Mortality rate depending on segment 

ag stI1F ag,st Mortality rate depending on age 

 

The definition equations of the regional-segmented model are: 
 

ISrg,ss(t) = stINF st,rg,ss(t)  Ist,rg,ss(t) 

 IXrg(t) = ssSSR(rg) ISrg,ss(t)  

IIrg(t) = ssSSR(rg) roROR(rg) ro,rg,ss  ISro,ss(t) 

IErg(t) = ssSSR(rg) rdRDE(rg) rg,rd,ss  ISrg,ss(t) 

IRrg(t) = IXrg(t) + IIrg(t) - IErg(t) 

 

 SRrg(t) = ssSSR(rg) Srg,ss(t)  

SIro,rg,ss(t) = ro,rg,ss  Sro,ss(t) 

SErg,rd,ss(t) = rg,rd,ss  Srd,ss(t) 

SNrg,ss(t) = Srg,ss(t) - rdRDE(rg) SErg,rd,ss(t) 

SINrg(t) = rg,ss  IRrg(t)  SNrg,ss(t) 

SIErg,ss(t) = rdRDE(rg) rd,ss  IRrd(t)  SErg,rd,ss(t) 

S2Irg,ss(t) = SINrg(t) + SIErg(t) 

 

RRrg(t) = ssSSR(rg) Rrg,ss(t)  

 

DRrg(t) = ssSSR(rg) Drg,ss(t) 

 

From now on, the above mathematical definitions will be summarized as 

 

{ S, E, Ist , D, N }   

 

The next table shows the equations dividing the increment and the decrement on each state, it must 
be considered in the implementation of the mathematical models. The table includes the sets that 

defined the existence of the equations manly for the infected states. 

 
 SIR Regional – Segmented Model - Differential Equations 

Set State 
State 

Increment 
State 

Decrement 
Natural 
Dead 

Exogenous 
Increment 

 REGIONAL - SEGMENT EQUATIONS 

SU Srg,ss(t)/t  S2Irg,ss(t) N  Srg,ss(t) S
rg,ss  NPX(t) 

EX Erg,ss(t)/t S2Irg,ss(t)   Erg,ss(t)  E
rg,ss  NPX(t) 

I0 Ist,rg,ss(t)/t   Erg,ss(t) 
st,ss  Ist,rg,ss(t) 

 I
rg,ss  NPX(t) 

I1F Ist,rg,ss(t)/t zst-1,ss  Ist-1,rg,ss(t)   

RE Rrg,ss(t)/t stI1F st,ss  Ist,rg,ss(t)  N  Rrg,ss(t) R
rg,ss  NPX(t) 

ED Drg,ss(t)/t stI1F ss  Ist,rg,ss(t)    

ND NRrg(t)/t N  ( SRrg(t) + RRrg(t) )    

 SUSCEPTIBLE STATE EQUATIONS 

  SRrg(t) = ssSSR(rg) Srg,ss(t)  

 SIro,rg,ss(t) = ro,rg,ss  Sro,ss(t) 

 SErg,rd,ss(t) = rg,rd,ss  Srd,ss(t) 

 SNrg,ss(t) = Srg,ss(t) - rdRDE(rg) SErg,rd,ss(t) 

 SINrg,ss(t) = rg,ss  IRrg(t)  SNrg,ss(t) 
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 SIR Regional – Segmented Model - Differential Equations 

Set State 
State 

Increment 
State 

Decrement 
Natural 
Dead 

Exogenous 
Increment 

 SIErg,ss(t) = rdRDE(rg)  rd,ss IRrd(t)  SErg,rd,ss(t) 

 S2Irg,ss(t) = SINrg(t) + SIErg(t) 

 INFECTED STATE EQUATIONS 

 ISrg,ss(t) = stINF st,rg,ss(t) Ist,rg,ss(t) 

  IXrg(t) = ssSSR(rg) ISrg,ss(t)  

 IIrg(t) = ssSSR(rg) roROR(rg) ro,rg,ss  ISro,ss(t) 

 IErg(t) = ssSSR(rg) rdRDE(rg) rg,rd,ss  ISrg,ss(t) 

 OTHER EQUATIONS 

 RRrg(t) = ssSSR(rg) Rrg,ss(t)  

 DRrg(t) = ssSSR(rg) Drg,ss(t) 

 
9.2. PARAMETER OF DIFFERENTIAL EQUATIONS  

 

The parameters that are part of the dynamic differential equations are  
 

BIOLOGICAL PARAMETERS – SEI3RD  &  SEIMR/R-S  MODELS 

SEI3RD  
Parameter 

SEIMR/R-S  
Parameter 

Description 
Measure 

Unit 

N N Natural mortality rate fpo/day 

  The latency period of the virus before developing day 

 ag Epidemic mortality rate fpo/day 

 rg,ss Probability of that a person may be contagion prob 

st ag,st Probability of I0, I1, I2, I3, …  recovering without worsening the clinical condition.  prob 

st ag,st Time a patient in I0, I1, I2, I3, … recovers day 

st ag,st Time a patient in I0, I1, I2, I3, … to next infected state  day 

zst z Total contact free rate in I1, I2, I3, … 1/day 

zQ
st zQ Total contact confined rate in I1, I2, I3, … 1/day 

cst
 cag,st

 Probability of contagion in free state I1, I2, I3, … prob 

cQ
st

 cQ
ag,st

 Probability of contagion in confined state I1, I2, I3, … Prob 

st  Transmissibility rate of an individual in state st  

Q
st  Transmissibility rate of an individual in state st on quarantine   

t,st  Dynamic rate of transmissibility calculated as  
t,st = (1 – t,st)  Q

st + t,st  st 
 

t,st  Epidemic control parameter (proportion of the st-state that circulates freely)  

 

9.3. MEASUREMENT SYSTEM 
 

The measurement system is related to the information provided by government offices regarding the 

state of the pandemic. Measurements must be linked to the epidemiological states of the SEIMR/R-
S model. The measurement system involves defining the measurement matrix, H(t), that transforms 

the measurement into epidemic states, it should be noted that this matrix depends on each case 
since it cannot be assumed that there is a standardized model of measuring the epidemic process, 

there may be states that are not measured (e.g., exposed, and asymptomatic), or states that are 
measured in aggregate form (e.g., severe and critical). 

 

In addition to measuring epidemic states, consideration should be given to measuring epidemic 
control measures (confinements, mitigations, ... ) which affect the evolution of the epidemic. The 

basic theory of KF assumes that control corresponds to an action whose effect can be measured 
accurately (deterministic assumed), however, in the reality of the pandemic the effect of control 

measures is uncertain (for example, the number of people who actually confine as a result of a 

confinement order is unknown). This involves adjusting KF to consider uncertainty in control policies. 
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