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VRP: VEHICLE ROUTING PROBLEM

The problem is to
determine the nodes that
must integrate the
different routes that
minimize the costs of
visiting all the nodes @ of
a distribution/recollection
system, starting from a
default source @ , using a
fleet of homogenous
vehicles.
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VRP: VEHICLE ROUTING PROBLEM

1. You must select the set
of nodes that make up
the route/path

2. You must select the
sequence of nodes within
the route
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VRP: VEHICLE ROUTING PROBLEM
WITH RESOURCES CONSTRAINTS

Min Zi“:_}' Cl_'i){l_'iv + ZV dvyv
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A/o h;, Travel time from i to j on route v (hr)
; Weight associated with the order in i (kg)
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VRP: VEHICLE ROUTING PROBLEM WITH RESOURCES CONSTRAINTS
SYSTEM INFORMATION APPROACH
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MATHEMATICAL ELEMENTS/OBJECTS
SETS:

IMPLICIT:
i All Nodes/Clients
Jj All Nodes /Clients
v  All Routes/Paths/Vehicles

EXPLICIT:

vi All Nodes/Clients

vj All Nodes /Clients

v v All Routes/Paths/Vehicles

vi+1 All nodes except de "default node”
warehouse
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PARAMETERS:

h;., Travel time from i to j on route v (hr)

v; Weight associated with the order in i
(kg)

Pi Volume associated with the order in
i(m3)

d, Costactivate route v ($)

C; Cost of going from i to j using the
route v (%)
Time, Time available for route v

Volumen, Volume capacity of route v
Weigth, Weight capacity of route v
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VARIABLES:

y, Decision to activate the route v
(binary)

X;, Decision to go from i to j using route
v (binary)

The variables are restricted by its type and
its existence conditions
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MATHEMATICAL ELEMENTS/OBJECTS

CONSTRAINTS:

COo1; All nodes must visit once

CO2;,, Ifone route arrive to the node i
must leave from this node.

CO3, Only if the route is activated can
visit a node

TIM, The sum of the travel times must
be less than permitted time for the
route (hr)

VOL, The sum of the volumes
transported must be less than the
volume capacity of the route (m3)

WEI, The sum of the weights

|74

transported must be less than the
weight capacity of the route (Kg)

The constraint must satisfies its existence
conditions
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http://www.doanalytics.net/Documents/An-Inventory-Routing-Problem.pdf

1 Introduction

PRAXAIR is a large industrial gases company with about 60 production fa-
cilities and over 10,000 customers across North America. PRAXAIR recently
negotiated a policy with its customers in which PRAXAIR is in charge of man-
aging its customers’ inventories. Customers will no longer be calling PRAXAIR
to request a deliverv. Instead, PRAXAIR will determine who receives a de-
liverv each day and what the size of that delivery will be. PRAXAIR will use

gauge readings received from remote telemetry units as well as regular customer
phone calls to monitor and forecast product inventories. The distribution plan-

ning problems associated with such vendor managed resupply policies are known
as inventory routing problems,
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Inventory routing problems are very different from wvehicle ronting problems.
Vehicle routing problems occur when customers place orders and the delivery
company, on any given dayv, assigns the orders for that day to routes for trucks.
In inventory routing problems, the delivery company, not the customer, decides
how much to deliver to which customers each day. There are no customer
orders. Instead, the deliverv company operates under the restriction that its
customers are not allowed to run out of product. Another difference is the
planning horizon. Vehicle routing problems typically deal with a single dav,
with the onlv requirement being that all orders have to be delivered by the end
of the dayv. Inventory routing problems deal with a longer horizon. Each day
the deliverv company makes decisions about which customers to visit and how
much to deliver to each of them, while keeping in mind that decisions made
today impact what has to be done in the future. The objective 1s to minimize
the total cost over the planning horizon while making sure no customers run
out of product. The flexibility to decide when customers receive a delivery and
how large these deliveries will be mav significantly reduce distribution costs.
However, this flexibility also makes it very difficult to determine a good, much
less an optimal, cost effective distribution plan. When the choice becomes which
of the customers to serve each day (PRAXAIR has over 10,000 customers ) and
how much to deliver to them, the choices become virtually endless.
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Vendor managed resupply policies can be used in many situations. In some
instances, the use of such a policy is natural, such as when the “customers” are
really part of the same company. In others, the use of a vendor managed resup-
ply policy is often the result of lengthy negotiations with customers who have for
yvears followed a policy in which they call in their orders. Examples of industries
where vendor managed resupply policies are being used or considered include,
the petrochemical industry (gas stations), the grocery industry (supermarkets),
the soft drink industry (vending machines), and the automotive industry (parts
distribution). The mumber of industries using vendor managed resupply policies
is increasing rapidly. An important reason for this is technology. For a variety
of industries/products, the monitoring technology that existed several yvears ago
was not sophisticated enough to make a vendor managed resupply system pos-
sible. The only way to check a customer’s inventory for many types of products
has been for the vendor to call the customer and for the customer to go look at
the meter on the tank, to count the number of items in the vending machine,
etc. Now the use of remote telemetry units, scanners, computers and modems
allows the monitoring of inventory levels directly by the vendor, opening up new
opportunities for vendor managed resupply policies.
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2 Problem Definition

The inventory routing problem {IRP) is concerned with the repeated distribu-
tion of a single product from a single facility, to a set N of customers over a
planning horizon of length 7', possibly infinity. Customer ¢ consumes the prod-
uct at a rate u; (volume per day) and has the capability to maintain a local
inventory of the product up to a maximum of C;. The inventory at customer
s I:;:' at time . A fleet M of homogeneous vehicles, with capacity @2, is available
for the distribution of the product. The objective is to minimize the average
daily distribution cost during the planning period without causing stockouts
at anv of the customers. Vehicles are allowed to make multiple trips per day.
Three decisions have to be made:

1. When to serve a customer?
2. How much to deliver to a customer when served?

3. Which delivery routes to use?
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Real-life inventory routing problems are obviously stochastic. No customer
will use product the same way every single day. In many situations, however, us-
age is relatively predictable and customers generally use about the same amount
each day if we look at their total usage for several days in a row. Therefore,

solution approaches developed for the IRP as defined above will still provide
useful planning tools.
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3  Solution Approach

[oven though the [RP is a long-term problem, almost all proposed solution
approaches solve only a short-term version of the problem to make it easier. In
early work, short-term was often just a single nlm but in later work this was
expanded to several davs. Besides the number of days modeled, key features
that distingnish different solution approaches include how the long-term effect of
short-term decisions is modeled, and how it 1s determined which customers are
included in the short-term problem. For a review of some of these approaches,
we refer to Campbell et al. [2].
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A short-term approach has the tendency to defer as many deliveries as pos-
sible to the next planning period, which may lead to an undesirable situation
in the next planning period. Therefore, the proper projection of a long-term
objective into a short-term planning problem is essential. It needs to capture
the costs and benefits of delivering to a customer earlier than necessary. Our fo-
cus has been on developing a flexible system capable of handling large instances
that properly balances short-term and long-term goals and that considers all
the key factors, i.e., geography, inventory, capacity, and usage rate. We wanted
also to create a system that would consider routing customers together on a
day where none of them are at the point of run out, but where they combine
to make a good full truckload deliverv. We found that most svstems reduce
the problem by starting with only the “emergency” customers, never putting
together certain combinations that make sense with regard to location and de-
livery size. The basis for our system is a two-phase solution approach. In the
first phase, we determine which customers receive a delivery on each day of the
planning period and decide on the size of the deliveries. In the second phase,
we determine the actual delivery routes and schedules for each of the dayvs.
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3.1 Phase I: An Integer Programming NModel

At the heart of the first phase is an integer program. Central to the model are
two quantities: LE max( 0, tu; ,Tf'} a lower bound on the total volume that
has to be delivered to customer i by the end of day t, and U} = tu; + C; .Tf'
an upper bound on the total volume that can be delivered to customer ¢ by the
end of day t. Let dt represent the delivery volume to customer ¢ on day t, then
to ensure that no stockout occurs at customer ¢ and to ensure that we do not
exceed the inventory capacity at customer i, we need to have that

Li< > di<Uf VieN, t=1,..T.
| <a<i

-
bl L

max( 0, fu; f_é.':'*'- U = tu; + C; — 19

4 T
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To model the resource constraints with some degree of accuracy and to have
a meaningful objective function, we found it necessary to explicitly use delivery
rontes. However, when we refer to a “route”, we are really referring to a sef
of customers without enforcing a specific ordering among the customers in the
set. We estimate the distance required to visit the customers in the set by the
length of the optimal traveling salesman tour through all the customers. Now,
let R be the set of delivery routes, let T, denote the duration of route r (as a
fraction of a day), and let ¢ be the cost of executing route r. Furthermore, let
rt be a 0-1 variable indicating whether route r is used on day t (zf = 1) or not
(xk = 0). The total volume that can be delivered on a single day is limited by
a combination of capacity and time constraints. Since vehicles are allowed to
make multiple trips per day, we cannot simply limit the total volume delivered
on a given dayv to be the sum of the vehicle capacities.
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To be more precise, the

resource constraints can be modeled by

Z dgp < Q.;:f. Yre R, t=1,..,7T,

e

and

Z Text < |M| t=1,..,T

These constraints ensure that we do not exceed the vehicle capacity on

any of

the selected routes and that the time required to execute the selected routes

does not exceed the time available.
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The basic Phase | intfeger programming model is given by

mit]E E f'r.;:f.
t T

Yie N, t 1.....1,
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The basic Phase | integer programming model is given by
min E E f'?-.I!::..
t T

s o AT . T
LY Szre RR(i) les<t dSi,rS UG ve € N,ot=1,...T,

r\nalyli('s

)
o8 ¢ b
& £



The first variation of the basic model handles fixed and variable stop times
at the customers as well as a vehicle reloading time at the facilitv. The duration
of a route T can be modified to include not only the estimated time to drive
the distance between the customers on the route, but also a fixed stop time for
each customer and an initial fill time for the vehicle required before the route
can start. Dispense time at a customer clearly cannot be included in T a priori
because it depends on the size of the delivery. Therefore, we must alter the
resource constraint as follows, where F' is the percentage of the day required to
dispense each unit of product

S (Tt + Y Fdi) < M| t=1,..T

mref nreEr
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The second variation handles operating modes of customers. Operating
mode refers to the start and end time of customer usage on each day of the
week. Before, we assumed that each customer ¢ uses product 24 hours per dav
evervday. Operating modes are important. When a customer does not use
product on the weekend, for example, it has a big impact on properly timing
the deliveries. Operating modes can be handled easily by appropriately modify-
ing the lower and upper bound parameters. The values of the lower and upper
bounds on day t now depend on where in the week davs 1 through t fall.

Lt=max (0, 2. us - 1%) Ut=2__us+C. -1
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The third variant handles time windows at customers. An operating mode
restricts when a customer uses product. A time window restricts when a cus-
tomer can receive a delivery. Time windows may be day dependent as well. To
handle time windows, the lower and upper bound parameters need to modified
again, but in a slightly different way. Now the lower bound JTE needs to be
defined as the total volume that has to be delivered to customer ¢ by the closing
of the time window on day ¢ to allow customer ¢ to last until the opening of
the time window on day t + 1 (or the opening of the time window on the first
available day for the next delivery if no deliveries can be made on day ¢ + 1).
The upper bound U} is now defined as the largest volume that customer i can
receive by the close of the delivery window on day f.
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The third variant handles time windows at customers. An operating mode
restricts when a customer uses product. A time window restricts when a cus-
tomer can receive a delivery. Time windows may be day dependent as well. To
handle time windows, the lower and upper bound parameters need to modified
again, but in a slightly different way. Now the lower bound }’;_E needs to be
defined as the total volume that has to be delivered to customer ¢ by the closing
of the time window on day # to allow customer ¢ to last until the opening of
the time window on day ¢t + 1 (or the opening of the time window on the first
available day for the next delivery if no deliveries can be made on day ¢ + 1).
The upper bound Uf is now defined as the largest volume that customer i can
receive by the close of the delivery window on day t.

di<q}

g% cantidad de producto que puede recibir el cliente i en dia t

L
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3.2 Phase I: Solving the Integer Programming Model

The integer programming model presented above is not very practical for two
reasons: the huge mumber of possible delivery routes and, although to a lesser
extent, the length of the planning horizon. To make the integer program com-
putationally tractable we consider a small (but good) set of delivery routes and
agoregate periods toward the end of the planning horizon.

§ AAnalytics



3.2.1 Clusters

Our approach to reduce the nmumber of routes is based on allowing customers to
be on a route together only if they are in the same cluster. A cluster is a group
of customers that can be served cost effectively by a single vehicle for a long
period of time. The cost of a cluster is an approximation of the distribution
cost for serving the customers in the cluster for a month. The cost of serving
a cluster does not only depend on the geographic locations of the customers in
the cluster, but also on whether the customers in the cluster have compatible
inventory capacities and usage rates. Therefore, to evaluate the cost of a cluster,
we need a model that considers all of these factors.

The following approach is used to identify a good set of disjoint clusters
covering all customers:

1. Generate a large set of possible clusters.
2. IFistimate the cost of serving each cluster.

3. Solve a set partitioning problem to select clusters.
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3.2.2 Aggregation/Relaxation

Given that our two-phase solution approach will be embedded in a rolling hori-
zon framework, the emphasis should be on the quality and detail of the decisions
concerning the first few days of the plan. This provides us with an excellent op-
portunity to reduce the size of the integer program bv aggregating davs towards
the end of the planning period.

For the first £ davs, we will still have route selection variables for each day,
but for the dayvs after that, we will have route selection variables covering periods
of several davs. Instead of making a decision on whether to execute each route
on davs 8 to 14 individually, for example, we now decide how manyv times each of
the routes will be executed during the whole week instead. Several Hgg egation
schemes were tested. We found that considering weeks rather than days towards
the end of the planning horizon still does a good job of preserving IhE" costs
associated with the effect of short-term decisions on the future and vields a
significant reduction in CPU time. Therefore, the dailv variables associated
with these later dayvs are replaced by weeklyv variables. Upper and lower bounds
are altered accordingly as well.

A further simplification is obtained by relaxing the integrality restrictions
on the variables representing the weekly decisions. Therefore, the only binary
variables appearing in the integer program will be those representing route se-
lections for the first & days.



3.3 Phase LI: Scheduling

A solution to the integer program of Phase | specifies the volumes to deliver
to each customer for the next &k dayvs. It does not specify departure times
and customer sequences for the different vehicles. Therefore, we still need to
construct vehicle routes and schedules.

Since the delivery volumes specified by the solution to the integer program
may not fit before a specific time of the dayv and mayv need to be received hefore
a certain later time to prevent run out, these deliveries have self imposed time
windows. Therefore, to convert the information provided by the solution to the
integer program to daily vehicle routes and schedules, we can solve a sequence
of vehicle routing problems with time windows.
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However, such an approach does not capitalize on the flexibility inherent in
the inventory routing problem. The delivery volumes specified by the solution
to the integer program are good from a long-term perspective; they may not be
cood from a short-term perspective. Therefore, we treat the delivery volumes
and timing specified by the solution to the integer programs as suggestions. We
tryv to follow these suggestions as closelv as possible, since this helps to achieve
our long-term goals, but we allow small deviations when it helps to construct
better short-term plans. To be more precise, we construct vehicle routes and
schedules for two consecutive days, where we force the total volume delivered to
a customer over the two dayvs to be greater than or equal to the total delivery
volume specified by the solution to the integer program for these two dayvs,
but we do not enforce specific delivery volumes on individual days.
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In this

wayv, we stay close to the delivery volumes suggested by the integer program,
which is good from a long-term perspective, but we introduce some flexibility in
the daily routing and scheduling, which is good from a short-term perspective.
Deliveries can be split into smaller pieces, delivering one part on the first day
and the second part on the second day if this works out to be better, for example
when resources are very tight on one of the days. This flexibility is even more
important when we consider the fact that in practice a few customers mayv not
follow a vendor managed resupply policy and may call in orders that need to
be added to the daily routing and scheduling problem. With new orders and
new accurate up-to-date information on customer inventory levels, it may make
sense to shift around some of the deliveries over the next couple of days.
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Because of customer usage and customer inventoryv capacities, there may
be customers that require a delivery on both dayvs or even multiple times a
day. Consequently, in our two day routing and scheduling problem, we can
distinguish two tvpes of customers: customers that require multiple deliveries
over the two days and customers that require only one,

We have developed and implemented an insertion heuristic for this two day
routing and scheduling problem. The heuristic is a logical progression of com-
monly used techniques in insertion heuristics for the vehicle routing problem
with time windows, see for example Solomon [5) and Kindervater and Savels-
bergh [4].
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